{"title":"Registration-based nonlinear model reduction of parametrized aerodynamics problems with applications to transonic Euler and RANS flows","authors":"Alireza H. Razavi, Masayuki Yano","doi":"10.1016/j.jcp.2024.113576","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a registration-based nonlinear model-order reduction (MOR) method for partial differential equations (PDEs) with applications to transonic Euler and Reynolds-averaged Navier–Stokes (RANS) equations in aerodynamics. These PDEs exhibit discontinuous features, namely shocks, whose location depends on problem configuration parameters, and the associated parametric solution manifold exhibits a slowly decaying Kolmogorov <em>N</em>-width. As a result, conventional linear MOR methods, which use linear reduced approximation spaces, do not yield accurate low-dimensional approximations. We present a registration-based nonlinear MOR method to overcome this challenge. Our formulation builds on the following key ingredients: (i) a geometrically transformable parametrized PDE discretization; (ii) localized spline-based parametrized transformations which warp the domain to align discontinuities; (iii) an efficient dilation-based shock sensor and metric to compute optimal transformation parameters; (iv) hyperreduction and online-efficient output-based error estimates; and (v) simultaneous transformation and adaptive finite element training. Compared to existing methods in the literature, our formulation is efficiently scalable to larger problems and is equipped with error estimates and hyperreduction. We demonstrate the effectiveness of the method on two-dimensional inviscid and turbulent flows modeled by the Euler and RANS equations, respectively.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113576"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008246","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a registration-based nonlinear model-order reduction (MOR) method for partial differential equations (PDEs) with applications to transonic Euler and Reynolds-averaged Navier–Stokes (RANS) equations in aerodynamics. These PDEs exhibit discontinuous features, namely shocks, whose location depends on problem configuration parameters, and the associated parametric solution manifold exhibits a slowly decaying Kolmogorov N-width. As a result, conventional linear MOR methods, which use linear reduced approximation spaces, do not yield accurate low-dimensional approximations. We present a registration-based nonlinear MOR method to overcome this challenge. Our formulation builds on the following key ingredients: (i) a geometrically transformable parametrized PDE discretization; (ii) localized spline-based parametrized transformations which warp the domain to align discontinuities; (iii) an efficient dilation-based shock sensor and metric to compute optimal transformation parameters; (iv) hyperreduction and online-efficient output-based error estimates; and (v) simultaneous transformation and adaptive finite element training. Compared to existing methods in the literature, our formulation is efficiently scalable to larger problems and is equipped with error estimates and hyperreduction. We demonstrate the effectiveness of the method on two-dimensional inviscid and turbulent flows modeled by the Euler and RANS equations, respectively.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.