Gradient composition design of FeCoCrMnNi high entropy alloys: An efficient and stable electrocatalyst for water splitting

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-12 DOI:10.1016/j.jpowsour.2024.235804
Bo Wen, Xin Zhao, Qinglong Dong, Bo Li, Xiao Lyu
{"title":"Gradient composition design of FeCoCrMnNi high entropy alloys: An efficient and stable electrocatalyst for water splitting","authors":"Bo Wen,&nbsp;Xin Zhao,&nbsp;Qinglong Dong,&nbsp;Bo Li,&nbsp;Xiao Lyu","doi":"10.1016/j.jpowsour.2024.235804","DOIUrl":null,"url":null,"abstract":"<div><div>FeCoCrMnNi high entropy alloys (HEAs) are synthesized on nickel form by pulse electrodeposition as an efficient and stable electrocatalyst for water splitting. Due to the gradient composition of metal elements, which enhance the synergistic effect for FeCoCrMnNi HEA, FeCoCrMnNi HEA shows excellent catalytic activities and stabilities on both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolyte. For HER, FeCoCrMnNi exhibits a low overpotential of 168 mV at current density of 10 mA cm<sup>−2</sup> and a Tafel slope of 180 mV dec<sup>−1</sup>. For OER, FeCoCrMnNi shows an overpotential of 231 mV at 10 mA cm<sup>−2</sup>, which is much lower than that of commercial IrO<sub>2</sub> electrocatalyst (330 mV). Moreover, FeCoCrMnNi exhibits an extraordinary stability in the current-density (i-t) test for 100 h at 100 mA cm<sup>−2</sup>, which results from the self-sacrificed leaching of Cr and high valence state of Mn exposes more electrocatalytic active sites on external surface. Therefore, the gradient composition design for high entropy alloys gives a new path to synthesize efficient and stable electrocatalysts for water splitting.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"627 ","pages":"Article 235804"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017567","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

FeCoCrMnNi high entropy alloys (HEAs) are synthesized on nickel form by pulse electrodeposition as an efficient and stable electrocatalyst for water splitting. Due to the gradient composition of metal elements, which enhance the synergistic effect for FeCoCrMnNi HEA, FeCoCrMnNi HEA shows excellent catalytic activities and stabilities on both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolyte. For HER, FeCoCrMnNi exhibits a low overpotential of 168 mV at current density of 10 mA cm−2 and a Tafel slope of 180 mV dec−1. For OER, FeCoCrMnNi shows an overpotential of 231 mV at 10 mA cm−2, which is much lower than that of commercial IrO2 electrocatalyst (330 mV). Moreover, FeCoCrMnNi exhibits an extraordinary stability in the current-density (i-t) test for 100 h at 100 mA cm−2, which results from the self-sacrificed leaching of Cr and high valence state of Mn exposes more electrocatalytic active sites on external surface. Therefore, the gradient composition design for high entropy alloys gives a new path to synthesize efficient and stable electrocatalysts for water splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁钴铬锰镍高熵合金的梯度成分设计:高效稳定的水分离电催化剂
通过脉冲电沉积法在镍基上合成了铁钴铬镍高熵合金(HEAs),作为一种高效稳定的水分离电催化剂。由于金属元素的梯度组成增强了铁钴铬镍高熵合金的协同效应,铁钴铬镍高熵合金在碱性电解质中对氢进化反应(HER)和氧进化反应(OER)均表现出优异的催化活性和稳定性。对于氢进化反应,FeCoCrMnNi 在电流密度为 10 mA cm-2 时显示出 168 mV 的低过电位和 180 mV dec-1 的 Tafel 斜坡。对于 OER,FeCoCrMnNi 在 10 mA cm-2 时的过电位为 231 mV,远低于商用 IrO2 电催化剂的过电位(330 mV)。此外,FeCoCrMnNi 在 100 mA cm-2 的电流密度(i-t)测试中表现出了超常的稳定性,这是由于 Cr 的自我牺牲浸出和 Mn 的高价态在外层表面暴露出了更多的电催化活性位点。因此,高熵合金的梯度成分设计为合成高效稳定的水分离电催化剂提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
In-situ generated sulfur/porous carbon nanocomposites featuring enhanced specific surface area for aqueous zinc-sulfur batteries with small electrochemical polarization Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes Polyimide dielectrics sandwiched by large-bandgap Al2O3 for high-temperature energy storage Enhancing sodium ion transport in batteries through a crosslinked ceramic network-coated polyethylene (PE) separator Multi-objective optimized energy management strategy using an artificial tree algorithm for extended range hybrid loaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1