Stabilizing effect of Leuconostoc mesenteroides Lm10 produced dextran in situ on stirred soy yogurt: Structure-function relationship

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2024-11-05 DOI:10.1016/j.carbpol.2024.122948
Yiqiang Dai , Zhe Wang , Zhongjiang Wang , Mingsheng Dong , Daoying Wang , Xiudong Xia
{"title":"Stabilizing effect of Leuconostoc mesenteroides Lm10 produced dextran in situ on stirred soy yogurt: Structure-function relationship","authors":"Yiqiang Dai ,&nbsp;Zhe Wang ,&nbsp;Zhongjiang Wang ,&nbsp;Mingsheng Dong ,&nbsp;Daoying Wang ,&nbsp;Xiudong Xia","doi":"10.1016/j.carbpol.2024.122948","DOIUrl":null,"url":null,"abstract":"<div><div>Stirred soy yogurt as a dairy alternative is widely accepted among consumers, but its poor stability has been an urgent problem. We found that <em>Leuconostoc mesenteroides</em> Lm10 produced dextran reduced water mobility and improved the water holding capacity of stirred soy yogurt, especially with over 4 % sucrose added which could completely prevent whey separation. With the increase of dextran content, the particle size of stirred soy yogurt was significantly decreased, accompanied by the improvement of viscoelastic behaviors and resistance to deformation. Moreover, dextran had a stronger ability to maintain the stability of stirred soy yogurt in comparison with gelatin, xanthan and carrageenan during cold storage. The structure-function attributes of this dextran were also revealed. Dextransucrase Gtf1674 was responsible for synthesizing dextran during soy yogurt fermentation. The produced dextran was mainly composed of α-1,6 glycosidic linkages with a low-branched degree and high molecular weight. After stirring, the dextran entangled with soy protein and formed small aggregates with a dense gel structure and small pores, causing them prone to binding with water and reducing the syneresis. This study suggested the benefits of dextran produced by <em>Leuc. mesenteroides</em> Lm10 in stirred soy yogurt, and facilitated developing the “clean label” plant-derived products.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011743","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stirred soy yogurt as a dairy alternative is widely accepted among consumers, but its poor stability has been an urgent problem. We found that Leuconostoc mesenteroides Lm10 produced dextran reduced water mobility and improved the water holding capacity of stirred soy yogurt, especially with over 4 % sucrose added which could completely prevent whey separation. With the increase of dextran content, the particle size of stirred soy yogurt was significantly decreased, accompanied by the improvement of viscoelastic behaviors and resistance to deformation. Moreover, dextran had a stronger ability to maintain the stability of stirred soy yogurt in comparison with gelatin, xanthan and carrageenan during cold storage. The structure-function attributes of this dextran were also revealed. Dextransucrase Gtf1674 was responsible for synthesizing dextran during soy yogurt fermentation. The produced dextran was mainly composed of α-1,6 glycosidic linkages with a low-branched degree and high molecular weight. After stirring, the dextran entangled with soy protein and formed small aggregates with a dense gel structure and small pores, causing them prone to binding with water and reducing the syneresis. This study suggested the benefits of dextran produced by Leuc. mesenteroides Lm10 in stirred soy yogurt, and facilitated developing the “clean label” plant-derived products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中肠联白色念珠菌 Lm10 在原位生产的葡聚糖对搅拌型大豆酸奶的稳定作用:结构-功能关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Editorial Board Formation and physical properties of skimmed milk/low-acyl gellan gum double gels: Influence of gelation sequence Synthesis and characterization of interpenetrating network hydrogels based on sugar beet pectin and heteroprotein complex: Structural characteristics and physicochemical properties Biodegradable, robust, and conductive bacterial cellulose @PPy-P macrofibers as resistive strain sensors for smart textiles Antibacterial chitosan/organic rectorite nanocomposite-conjugated gelatin/β-cyclodextrin hydrogels with improved hemostasis performance for wound repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1