Predictive modeling for dynamic heat load in frigid railway roadbeds: An energy-efficient approach

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS Thermal Science and Engineering Progress Pub Date : 2024-11-10 DOI:10.1016/j.tsep.2024.103049
Tianfei Hu , Liqi Zhao , Tengfei Wang , Zurun Yue , Yifei Yuan
{"title":"Predictive modeling for dynamic heat load in frigid railway roadbeds: An energy-efficient approach","authors":"Tianfei Hu ,&nbsp;Liqi Zhao ,&nbsp;Tengfei Wang ,&nbsp;Zurun Yue ,&nbsp;Yifei Yuan","doi":"10.1016/j.tsep.2024.103049","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents an innovative approach to dynamic heat load prediction in railway roadbeds situated in cold climates by incorporating the concept of heat load, traditionally used in the building sector. The method facilitates a comprehensive evaluation and energy-efficient control of heating systems in these specialized transportation infrastructures. Utilizing an integrated building simulation toolkit (DeST), a computational model for roadbed micro-elements is established, integrating weather, radiation, and shading models to simulate pertinent environmental factors. Employing the state space method, a thermal module calculates the base temperature of these micro-elements. Subsequent calculations determine the roadbed’s target temperature and temporal heat load. Empirical data from the Harbin-Qiqihar high-speed railway validates the method, revealing strong alignment between computed and measured roadbed temperatures. Heat load peaks at 945 W/m and averages 335 W/m in freezing conditions. The method accounts for thermal hysteresis and variations related to roadbed orientation and depth. Regional statistics show a heat load range of 531 to 1,338 W/m and establish a direct correlation between heat load and latitude. The findings significantly enhance the ability to assess frost damage and design energy-efficient heating plans for railway roadbeds in frigid environments.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103049"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190492400667X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents an innovative approach to dynamic heat load prediction in railway roadbeds situated in cold climates by incorporating the concept of heat load, traditionally used in the building sector. The method facilitates a comprehensive evaluation and energy-efficient control of heating systems in these specialized transportation infrastructures. Utilizing an integrated building simulation toolkit (DeST), a computational model for roadbed micro-elements is established, integrating weather, radiation, and shading models to simulate pertinent environmental factors. Employing the state space method, a thermal module calculates the base temperature of these micro-elements. Subsequent calculations determine the roadbed’s target temperature and temporal heat load. Empirical data from the Harbin-Qiqihar high-speed railway validates the method, revealing strong alignment between computed and measured roadbed temperatures. Heat load peaks at 945 W/m and averages 335 W/m in freezing conditions. The method accounts for thermal hysteresis and variations related to roadbed orientation and depth. Regional statistics show a heat load range of 531 to 1,338 W/m and establish a direct correlation between heat load and latitude. The findings significantly enhance the ability to assess frost damage and design energy-efficient heating plans for railway roadbeds in frigid environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寒冷铁路路基动态热负荷预测模型:节能方法
这项研究提出了一种创新方法,通过结合传统上用于建筑领域的热负荷概念,对位于寒冷气候条件下的铁路路基进行动态热负荷预测。该方法有助于对这些专用交通基础设施的供热系统进行综合评估和节能控制。利用综合建筑模拟工具包(DeST),建立了路基微元件计算模型,集成了天气、辐射和遮阳模型,以模拟相关的环境因素。热模块采用状态空间法计算这些微元件的基础温度。随后的计算确定了路基的目标温度和时间热负荷。来自哈尔滨-齐齐哈尔高速铁路的经验数据验证了这一方法,显示计算和测量的路基温度高度一致。在冰冻条件下,热负荷峰值为 945 瓦/米,平均为 335 瓦/米。该方法考虑了热滞后以及与路基走向和深度有关的变化。区域统计数据显示热负荷范围为 531 至 1,338 W/m,并确定了热负荷与纬度之间的直接相关性。这些发现大大提高了在寒冷环境中评估冻害和设计铁路路基节能加热计划的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
期刊最新文献
On the effect of a tangential intake on the performance of natural dry draft cooling towers in crosswind conditions 6E evaluation of an innovative humidification dehumidification solar distiller unit: An experimental investigation Seasonal performance comparison of R-410A and R-454B in a variable-speed air-cooled scroll chiller Predictive modeling for dynamic heat load in frigid railway roadbeds: An energy-efficient approach A thermo-economic comparison on new and conventional alternatives of pressurization of CO2 in CCS systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1