Circular dichroism (CD) technology has garnered significant attention due to its extensive applications in ultra-sensitive biosensing and spin-selective optical frequency conversion. However, existing terahertz chiral structures are constrained by linewidth, which limits their effectiveness in narrowband signal processing. In this study, we propose the notion of quasi-bound states in the continuum (quasi-BIC) within a planar elliptical hole all-silicon terahertz metasurface that exhibits broken mirror symmetry. This approach achieves a CD value as high as 0.97, with a linewidth below 0.5 GHz and a Quality (Q)-factor reaching up to 107 in the 1.3 THz to 1.55 THz band, thereby enabling ultra-narrowband terahertz chirality. This method significantly enhances the Q-factor of optical resonant systems, reduces linewidth, and achieves strong CD while addressing the trade-off between high Q-factor and high CD observed in existing structures. The theoretical foundations for achieving ultra-narrow linewidth are established through band structure calculations and far-field polarization analysis. Additionally, the Q-factor of quasi-BIC can be flexibly optimized through parameter tuning, rendering it more practical than perfect BIC in real-world applications. This study presents a novel solution for terahertz narrowband chirality and optical filters, potentially advancing technologies in related fields.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.