NFV recovery strategies for critical services after massive failures in optical networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Optical Switching and Networking Pub Date : 2024-11-07 DOI:10.1016/j.osn.2024.100790
Trond Vatten, Poul E. Heegaard, Yuming Jiang
{"title":"NFV recovery strategies for critical services after massive failures in optical networks","authors":"Trond Vatten,&nbsp;Poul E. Heegaard,&nbsp;Yuming Jiang","doi":"10.1016/j.osn.2024.100790","DOIUrl":null,"url":null,"abstract":"<div><div>Today, more critical services than ever rely on the communication infrastructure of 5G and beyond, demanding resilient recovery strategies when disasters occur. The inherent uncertainty of disasters makes post-disaster recovery a complex challenge. Today’s solutions focus on external infrastructure, such as alternative power supply or ad-hoc UAVs, to restore communication. However, the programmable nature introduced in 5G also allows us to migrate (relocate) Virtual Network Functions (VNFs) to restore communication more efficiently. In this paper, we develop an experimental framework to evaluate the performance of recovery strategies utilizing VNF migration in an optical network. We demonstrate that selecting the appropriate post-disaster recovery strategy can significantly accelerate the restoration of critical services by several hours in some disaster scenarios. Furthermore, we create <em>ClusPRi</em>, a modification of the virtual resource allocation algorithm <em>ClusPR</em>. ClusPRi prioritizes critical traffic when allocating resources in a post-disaster scenario. We show that adding routing priority to the resource allocation algorithm further accelerates the restoration of critical communication in a disaster scenario.</div></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"55 ","pages":"Article 100790"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427724000201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Today, more critical services than ever rely on the communication infrastructure of 5G and beyond, demanding resilient recovery strategies when disasters occur. The inherent uncertainty of disasters makes post-disaster recovery a complex challenge. Today’s solutions focus on external infrastructure, such as alternative power supply or ad-hoc UAVs, to restore communication. However, the programmable nature introduced in 5G also allows us to migrate (relocate) Virtual Network Functions (VNFs) to restore communication more efficiently. In this paper, we develop an experimental framework to evaluate the performance of recovery strategies utilizing VNF migration in an optical network. We demonstrate that selecting the appropriate post-disaster recovery strategy can significantly accelerate the restoration of critical services by several hours in some disaster scenarios. Furthermore, we create ClusPRi, a modification of the virtual resource allocation algorithm ClusPR. ClusPRi prioritizes critical traffic when allocating resources in a post-disaster scenario. We show that adding routing priority to the resource allocation algorithm further accelerates the restoration of critical communication in a disaster scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光网络大规模故障后关键服务的 NFV 恢复策略
如今,比以往任何时候都更多的关键服务依赖于 5G 及更先进的通信基础设施,这就要求在灾难发生时制定弹性恢复策略。灾害固有的不确定性使得灾后恢复成为一项复杂的挑战。目前的解决方案主要依靠替代电源或临时无人机等外部基础设施来恢复通信。然而,5G 引入的可编程特性还允许我们迁移(重新定位)虚拟网络功能(VNF),从而更高效地恢复通信。在本文中,我们开发了一个实验框架,用于评估在光网络中利用 VNF 迁移的恢复策略的性能。我们证明,在某些灾难场景中,选择适当的灾后恢复策略可将关键服务的恢复速度显著加快数小时。此外,我们还创建了 ClusPRi,它是对虚拟资源分配算法 ClusPR 的修改。ClusPRi 在灾后场景中分配资源时会优先考虑关键流量。我们的研究表明,在资源分配算法中加入路由优先权可进一步加快灾难场景中关键通信的恢复速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
期刊最新文献
Modeling and upgrade of disaster-resilient interdependent networks using machine learning Self-adjusting resilient control plane for virtual software-defined optical networks NFV recovery strategies for critical services after massive failures in optical networks Editorial Board An architecture to improve performance of software-defined optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1