{"title":"Neutron transport and activation comparison between OpenMC and FISPACT-II in ARC-class reactor","authors":"Davide Pettinari , Raffaella Testoni , Massimo Zucchetti , Miriam Parisi","doi":"10.1016/j.fusengdes.2024.114713","DOIUrl":null,"url":null,"abstract":"<div><div>In a fusion reactor, high-energy neutron fluxes strike the materials causing radiation damage and triggering nuclear reactions that alter the chemical composition of the materials through transmutation. This investigation employs the Monte Carlo code OpenMC with Direct Accelerated Geometry Monte Carlo (DAGMC), a software package that allows users to perform Monte Carlo radiation transport directly on CAD models. The analysis was conducted on an Affordable Robust Compact (ARC) class reactor using a 3D CAD geometry. OpenMC supports depletion calculations allowing for the time evolution of the radioactive inventories evaluation. This study focuses on the machine’s nuclear performance, analyzing tritium production, neutron fluxes, and power deposition to assess the reactor’s behavior. It also explores the primary aspects of neutron irradiation on solid materials in the ARC class reactor, with particular emphasis on neutron-induced activation and displacements per atom (DPA). The neutronic results indicate that the predicted tritium breeding ratio and power density are consistent with both the reactor design specifications and the findings in existing literature, while the DPA and activation calculations reveal key areas of material degradation due to neutron irradiation. To validate the accuracy of the results, a comparison was made with corresponding results obtained using the FISPACT-II code. The agreement between the two codes serves as a benchmark for the reliability of OpenMC in predicting nuclear activation phenomena in fusion reactors.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"209 ","pages":"Article 114713"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005647","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In a fusion reactor, high-energy neutron fluxes strike the materials causing radiation damage and triggering nuclear reactions that alter the chemical composition of the materials through transmutation. This investigation employs the Monte Carlo code OpenMC with Direct Accelerated Geometry Monte Carlo (DAGMC), a software package that allows users to perform Monte Carlo radiation transport directly on CAD models. The analysis was conducted on an Affordable Robust Compact (ARC) class reactor using a 3D CAD geometry. OpenMC supports depletion calculations allowing for the time evolution of the radioactive inventories evaluation. This study focuses on the machine’s nuclear performance, analyzing tritium production, neutron fluxes, and power deposition to assess the reactor’s behavior. It also explores the primary aspects of neutron irradiation on solid materials in the ARC class reactor, with particular emphasis on neutron-induced activation and displacements per atom (DPA). The neutronic results indicate that the predicted tritium breeding ratio and power density are consistent with both the reactor design specifications and the findings in existing literature, while the DPA and activation calculations reveal key areas of material degradation due to neutron irradiation. To validate the accuracy of the results, a comparison was made with corresponding results obtained using the FISPACT-II code. The agreement between the two codes serves as a benchmark for the reliability of OpenMC in predicting nuclear activation phenomena in fusion reactors.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.