Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-11-16 DOI:10.1016/j.ijheatfluidflow.2024.109658
Khaoula Friji , Ons Ghriss , Abdallah Bouabidi , Yashar Aryanfar , Humberto Garcia Castellanos , Ali Keçebaş
{"title":"Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort","authors":"Khaoula Friji ,&nbsp;Ons Ghriss ,&nbsp;Abdallah Bouabidi ,&nbsp;Yashar Aryanfar ,&nbsp;Humberto Garcia Castellanos ,&nbsp;Ali Keçebaş","doi":"10.1016/j.ijheatfluidflow.2024.109658","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into optimizing the thermal efficiency of Trombe Wall (TW) systems through the strategic integration of L-shaped fins, offering a novel approach to enhancing solar heating capabilities in buildings. By meticulously examining the effects of fin geometry-including thickness, length, and number-on the system’s performance, the research provides valuable insights into the design and operational optimization of TW systems. Using CFD simulations, the investigation reveals that specific fin configurations significantly improve heat transfer and air circulation within the TW, thereby augmenting the system’s thermal efficiency. Main results suggest that a fin thickness of 0.01 m and a fin length of 0.2 m, combined with an optimal number of fins, can achieve the most effective thermal performance, enhancing room temperature homogeneity while adhering to comfort standards. This comprehensive analysis underscores the critical role of fin geometry in solar heating technologies and paves the way for future innovations in sustainable building designs. The study’s implications extend beyond immediate energy savings, suggesting avenues for further research into material efficiencies and architectural integration, ultimately contributing to the broader adoption of renewable energy solutions in the construction sector.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109658"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003837","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into optimizing the thermal efficiency of Trombe Wall (TW) systems through the strategic integration of L-shaped fins, offering a novel approach to enhancing solar heating capabilities in buildings. By meticulously examining the effects of fin geometry-including thickness, length, and number-on the system’s performance, the research provides valuable insights into the design and operational optimization of TW systems. Using CFD simulations, the investigation reveals that specific fin configurations significantly improve heat transfer and air circulation within the TW, thereby augmenting the system’s thermal efficiency. Main results suggest that a fin thickness of 0.01 m and a fin length of 0.2 m, combined with an optimal number of fins, can achieve the most effective thermal performance, enhancing room temperature homogeneity while adhering to comfort standards. This comprehensive analysis underscores the critical role of fin geometry in solar heating technologies and paves the way for future innovations in sustainable building designs. The study’s implications extend beyond immediate energy savings, suggesting avenues for further research into material efficiencies and architectural integration, ultimately contributing to the broader adoption of renewable energy solutions in the construction sector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化 Trombe 墙的性能:L 型鳍片对太阳能加热效率和建筑热舒适度的影响
本研究通过对 L 型鳍片的战略性集成,深入探讨了如何优化特洛姆贝墙(TW)系统的热效率,为提高建筑物的太阳能加热能力提供了一种新方法。通过细致研究翅片几何形状(包括厚度、长度和数量)对系统性能的影响,该研究为 TW 系统的设计和运行优化提供了宝贵的见解。通过 CFD 模拟,研究发现特定的翅片配置可以显著改善 TW 内部的热传递和空气循环,从而提高系统的热效率。主要结果表明,0.01 米的鳍片厚度和 0.2 米的鳍片长度,再加上最佳的鳍片数量,可以实现最有效的热性能,在提高室温均匀性的同时符合舒适标准。这项综合分析强调了翅片几何形状在太阳能加热技术中的关键作用,并为未来可持续建筑设计的创新铺平了道路。这项研究的意义不仅在于直接节约能源,还为进一步研究材料效率和建筑一体化提出了建议,最终有助于在建筑领域更广泛地采用可再生能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
A MOPSO-based design optimization on molten salt steam generator forced circulation system under off-design conditions Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil Detached eddy simulation of large scale wind turbine wake in offshore environment Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1