Quantitative comparison of vortex identification methods in three-dimensional fluid flow around bluff bodies

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2025-02-16 DOI:10.1016/j.ijheatfluidflow.2025.109773
Kinga Andrea Kovács, Esztella Balla
{"title":"Quantitative comparison of vortex identification methods in three-dimensional fluid flow around bluff bodies","authors":"Kinga Andrea Kovács,&nbsp;Esztella Balla","doi":"10.1016/j.ijheatfluidflow.2025.109773","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of vortices remains a critical yet unresolved challenge in fluid mechanics, as no universally accepted definition of a vortex exists. This study compares several vortex detection methods applied to the simulation of three-dimensional fluid flows around a cylinder and a rectangular cuboid at various Reynolds numbers and angles of attack, including a highly turbulent flow case. The methods under investigation include traditional Eulerian local criteria – <span><math><mi>ω</mi></math></span>-criterion, <span><math><mi>Q</mi></math></span>-criterion, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-criterion – as well as more recent approaches such as the <span><math><mi>Ω</mi></math></span>-method, Rortex method, Omega-Liutex method, and the Lagrangian-averaged vorticity deviation (LAVD). Classification metrics and visualization methods are used to quantify and compare the performance of each method. While traditional criteria and the Rortex method demonstrated accuracy only with carefully chosen parameters, the <span><math><mi>Ω</mi></math></span>-, and Omega-Liutex methods achieved reliable results with consistent uncertainty using threshold values near the suggested value of 0.52. In highly three-dimensional turbulent flows, all methods encountered challenges with shear contamination, though the LAVD method was the most robust. However, the LAVD method’s reliance on two-dimensional plane-based analysis limits its ability to capture the full volumetric nature of vortices in such flows, which contributed to reduced accuracy. The LAVD method is threshold independent, and can provide accurate results, however, only on the cost of high computational time. It is concluded that for applications with limited computational resources, simpler methods like the <span><math><mi>Ω</mi></math></span>-method may be preferable. However, in scenarios requiring high accuracy, the LAVD method, despite its longer processing time, could be more effective.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"113 ","pages":"Article 109773"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000311","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of vortices remains a critical yet unresolved challenge in fluid mechanics, as no universally accepted definition of a vortex exists. This study compares several vortex detection methods applied to the simulation of three-dimensional fluid flows around a cylinder and a rectangular cuboid at various Reynolds numbers and angles of attack, including a highly turbulent flow case. The methods under investigation include traditional Eulerian local criteria – ω-criterion, Q-criterion, and λ2-criterion – as well as more recent approaches such as the Ω-method, Rortex method, Omega-Liutex method, and the Lagrangian-averaged vorticity deviation (LAVD). Classification metrics and visualization methods are used to quantify and compare the performance of each method. While traditional criteria and the Rortex method demonstrated accuracy only with carefully chosen parameters, the Ω-, and Omega-Liutex methods achieved reliable results with consistent uncertainty using threshold values near the suggested value of 0.52. In highly three-dimensional turbulent flows, all methods encountered challenges with shear contamination, though the LAVD method was the most robust. However, the LAVD method’s reliance on two-dimensional plane-based analysis limits its ability to capture the full volumetric nature of vortices in such flows, which contributed to reduced accuracy. The LAVD method is threshold independent, and can provide accurate results, however, only on the cost of high computational time. It is concluded that for applications with limited computational resources, simpler methods like the Ω-method may be preferable. However, in scenarios requiring high accuracy, the LAVD method, despite its longer processing time, could be more effective.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
New correlation of heat transfer coefficient for saturated flow boiling in smooth helically coiled tubes Numerical study and moth flame optimization of thermal–hydraulic performance of fractal microchannel heat sink with ribs and cavity Investigation of blowing and suction for turbulent flow control on a transonic airfoil Numerical investigation of heat transfer enhancement in mini-channels with modified surface protrusions Quantitative comparison of vortex identification methods in three-dimensional fluid flow around bluff bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1