A pressure-based unified solver for low Mach compressible two-phase flows

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-11-16 DOI:10.1016/j.ijheatfluidflow.2024.109657
Rohit Rana, Nikhil Kumar Singh
{"title":"A pressure-based unified solver for low Mach compressible two-phase flows","authors":"Rohit Rana,&nbsp;Nikhil Kumar Singh","doi":"10.1016/j.ijheatfluidflow.2024.109657","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a low Mach, pressure-based solver is developed for simulation of compressible two-phase flows. The two-dimensional solver developed on collocated grids in a finite volume framework adopts a unified formulation to efficiently handle different combinations of the two phases, including the cases where compressible and incompressible phases coexist. The pressure-based solver is coupled to a sharp interface capturing approach based on the coupled level set and volume of fluid method, which can accurately account for surface tension. The energy equation considered in the framework also accounts for dissipative effects due to viscosity and heat conduction. A variety of representative test cases of increasing complexity are considered to evaluate the performance of the solver in simulating compressibility effects while accurately resolving the interface. The results for Rayleigh-Taylor instability exhibit equivalent performance in both incompressible and low Mach regimes, while accounting for thermal effects arising due to compressibility. An isothermal bubble compression case due to a velocity field shows excellent agreement with existing results. The numerical results of bubble oscillations immersed in an incompressible liquid validated with one-dimensional and two-dimensional Rayleigh-Plesset model at different density ratios depict the ability of the unified approach to handle pressure waves effectively. This is further demonstrated by simulating bubble expansion inside an incompressible fluid due to decaying pressure.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109657"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003825","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a low Mach, pressure-based solver is developed for simulation of compressible two-phase flows. The two-dimensional solver developed on collocated grids in a finite volume framework adopts a unified formulation to efficiently handle different combinations of the two phases, including the cases where compressible and incompressible phases coexist. The pressure-based solver is coupled to a sharp interface capturing approach based on the coupled level set and volume of fluid method, which can accurately account for surface tension. The energy equation considered in the framework also accounts for dissipative effects due to viscosity and heat conduction. A variety of representative test cases of increasing complexity are considered to evaluate the performance of the solver in simulating compressibility effects while accurately resolving the interface. The results for Rayleigh-Taylor instability exhibit equivalent performance in both incompressible and low Mach regimes, while accounting for thermal effects arising due to compressibility. An isothermal bubble compression case due to a velocity field shows excellent agreement with existing results. The numerical results of bubble oscillations immersed in an incompressible liquid validated with one-dimensional and two-dimensional Rayleigh-Plesset model at different density ratios depict the ability of the unified approach to handle pressure waves effectively. This is further demonstrated by simulating bubble expansion inside an incompressible fluid due to decaying pressure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压力的低马赫可压缩两相流统一求解器
本研究开发了一种基于压力的低马赫求解器,用于模拟可压缩两相流。该二维求解器是在有限体积框架内的拼接网格上开发的,采用了统一的表述方式,可有效处理两相的不同组合,包括可压缩相和不可压缩相共存的情况。基于压力的求解器与基于水平集和流体体积耦合方法的尖锐界面捕捉方法相耦合,可以准确地考虑表面张力。框架中考虑的能量方程还考虑了粘度和热传导引起的耗散效应。我们考虑了各种复杂程度不断增加的代表性测试案例,以评估求解器在模拟可压缩性效应的同时准确解决界面问题的性能。雷利-泰勒不稳定性的结果表明,在不可压缩和低马赫状态下都具有同等性能,同时考虑到了可压缩性引起的热效应。由速度场引起的等温气泡压缩情况与现有结果非常吻合。浸泡在不可压缩液体中的气泡振荡的数值结果,在不同密度比下通过一维和二维瑞利-普莱塞特模型验证,说明统一方法能够有效处理压力波。通过模拟气泡在不可压缩液体中因压力衰减而产生的膨胀,进一步证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
A MOPSO-based design optimization on molten salt steam generator forced circulation system under off-design conditions Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil Detached eddy simulation of large scale wind turbine wake in offshore environment Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1