Study on the influence of tube type and fluid flow channel on cooling heat transfer characteristics of supercritical CO2 in spirally grooved casing tubes
Dong Wang , Rongrong Zhou , Mengxue Li , Kangkang Zhang , Zilong Wang , Kang Li , Huaqiang Chu
{"title":"Study on the influence of tube type and fluid flow channel on cooling heat transfer characteristics of supercritical CO2 in spirally grooved casing tubes","authors":"Dong Wang , Rongrong Zhou , Mengxue Li , Kangkang Zhang , Zilong Wang , Kang Li , Huaqiang Chu","doi":"10.1016/j.ijheatfluidflow.2025.109804","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the heat transfer characteristics of supercritical CO<sub>2</sub> (SCO<sub>2</sub>) in five different spirally grooved casing tubes and proposes a comprehensive evaluation factor to assess their overall performance, aiming to improve heat exchanger efficiency through optimizing tube designs. The Finite Volume Method is employed to simulate and compare five different spirally grooved configurations: three-start circular arc (Case A), four-start circular arc (Case B), four-start trapezoidal (Case C), four-start triangular (Case D), and six-start circular arc (Case E). The results show that when SCO<sub>2</sub> flows through the channel between the inner and outer tubes (channel 1), Case E exhibits the highest heat transfer coefficient, with a value of 2537.91 W·(m<sup>2</sup>·K)<sup>−1</sup>. This is significantly higher than the other designs, with a maximum increase of 19.20 %, demonstrating its optimal performance in enhancing heat transfer efficiency. In the inner tube channel (channel 2), the average heat transfer coefficients for Case D and Case E are approximately equal, around 2410 W·(m<sup>2</sup>·K)<sup>−1</sup>, which is 3.22 % higher on average than the other three designs, indicating impressive potential for optimizing the groove shape in channel 2. The pattern of SCO<sub>2</sub> flowing in channel 2 can effectively reduce the pressure drop gradient, with a maximum reduction of 27.60 %, thereby significantly improving the safety of the system. The flow pattern of SCO<sub>2</sub> in channel 2 of Case A exhibits the optimal comprehensive evaluation factor value (2.03). These scientific findings provide conducive insights for optimizing design of the SCO<sub>2</sub> heat exchangers.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"114 ","pages":"Article 109804"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000621","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the heat transfer characteristics of supercritical CO2 (SCO2) in five different spirally grooved casing tubes and proposes a comprehensive evaluation factor to assess their overall performance, aiming to improve heat exchanger efficiency through optimizing tube designs. The Finite Volume Method is employed to simulate and compare five different spirally grooved configurations: three-start circular arc (Case A), four-start circular arc (Case B), four-start trapezoidal (Case C), four-start triangular (Case D), and six-start circular arc (Case E). The results show that when SCO2 flows through the channel between the inner and outer tubes (channel 1), Case E exhibits the highest heat transfer coefficient, with a value of 2537.91 W·(m2·K)−1. This is significantly higher than the other designs, with a maximum increase of 19.20 %, demonstrating its optimal performance in enhancing heat transfer efficiency. In the inner tube channel (channel 2), the average heat transfer coefficients for Case D and Case E are approximately equal, around 2410 W·(m2·K)−1, which is 3.22 % higher on average than the other three designs, indicating impressive potential for optimizing the groove shape in channel 2. The pattern of SCO2 flowing in channel 2 can effectively reduce the pressure drop gradient, with a maximum reduction of 27.60 %, thereby significantly improving the safety of the system. The flow pattern of SCO2 in channel 2 of Case A exhibits the optimal comprehensive evaluation factor value (2.03). These scientific findings provide conducive insights for optimizing design of the SCO2 heat exchangers.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.