{"title":"Effects of manganese and copper co-doped bioactive glasses with photothermal response on osseous cells","authors":"Sahand Zabih Gholami, Maryam Tajabadi, Bijan Eftekhari Yekta","doi":"10.1016/j.mtla.2024.102253","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, a series of bioactive glasses with a composition based on SiO<sub>2</sub><sub><img></sub>Na<sub>2</sub>O<img>CaO-P<sub>2</sub>O<sub>5</sub>-Bi<sub>2</sub>O<sub>3</sub>, doped with either manganese (Mn) or copper (Cu), or a combination of both have been developed. The aim was to create a biocompatible, bioactive material with a photothermal (PT) response for potential use in bone cancer treatment. UV/vis/NIR spectroscopy indicated that the addition of Cu to the glass resulted in a broadband absorption of around 800 nm, while Mn showed an absorption band of around 500 nm. Photoluminescence (PL) spectroscopy, which was performed by exciting the specimen using a 750 nm beam, revealed an emission at 823 nm for all glass compositions, but with varying intensities. When exposed to an 808 nm laser (5 W/cm<sup>2</sup>), the glass samples exhibited temperature rising, with the sample containing both Mn and Cu, showing the highest absorption peak, reaching 204 °C after 5 min. The degradation rate of the glass in a phosphate-buffered saline (PBS) solution was influenced by the presence of Mn and Cu. Cytotoxic assessment on osteoblast-like cells showed that the presence of Mn promoted cell proliferation by over 20 % after 24 h, but when irradiated with an 808 nm laser, the viability of cells decreased by nearly 60 % due to heat ablation. Finally, the glass sample demonstrated in vitro bioactivity through the formation of a hydroxyapatite layer on its surface when immersed in simulated body fluid.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102253"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a series of bioactive glasses with a composition based on SiO2Na2OCaO-P2O5-Bi2O3, doped with either manganese (Mn) or copper (Cu), or a combination of both have been developed. The aim was to create a biocompatible, bioactive material with a photothermal (PT) response for potential use in bone cancer treatment. UV/vis/NIR spectroscopy indicated that the addition of Cu to the glass resulted in a broadband absorption of around 800 nm, while Mn showed an absorption band of around 500 nm. Photoluminescence (PL) spectroscopy, which was performed by exciting the specimen using a 750 nm beam, revealed an emission at 823 nm for all glass compositions, but with varying intensities. When exposed to an 808 nm laser (5 W/cm2), the glass samples exhibited temperature rising, with the sample containing both Mn and Cu, showing the highest absorption peak, reaching 204 °C after 5 min. The degradation rate of the glass in a phosphate-buffered saline (PBS) solution was influenced by the presence of Mn and Cu. Cytotoxic assessment on osteoblast-like cells showed that the presence of Mn promoted cell proliferation by over 20 % after 24 h, but when irradiated with an 808 nm laser, the viability of cells decreased by nearly 60 % due to heat ablation. Finally, the glass sample demonstrated in vitro bioactivity through the formation of a hydroxyapatite layer on its surface when immersed in simulated body fluid.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).