Lianfang Sun , Xingji Zhu , Yujin Wang , Guochen Zhao
{"title":"Effect of exposure conditions on alkali-silica reactions in glass incorporated mortars: Importance of sodium ion","authors":"Lianfang Sun , Xingji Zhu , Yujin Wang , Guochen Zhao","doi":"10.1016/j.matlet.2024.137690","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the alkali-silica reaction (ASR) in glass-incorporated mortar (GIM) under various types of Na<sup>+</sup>-contained exposure conditions were investigated by analyzing ASR expansion, compressive strength, and microstructure. As a key result, in comparison to the exposure condition with the same hydroxide OH<sup>−</sup> concentration, a dramatic increase in ASR-induced expansion can be observed under the mixture condition of 0.5 N-NaOH + 0.5 N-NaCl. SEM/EDX results reveales that Na<sup>+</sup> can improve Na/Si ratio of ASR gel, resulting in a higher swelling capacity. The variation of compressive strength under different exposure conditions was also studied, and then interpreted by analysis of pore structure characteristics. This work highlights the role of Na<sup>+</sup> ion on ASR under alkaline conditions, leading to more precautions in the manufacture of GIM.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137690"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018305","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the alkali-silica reaction (ASR) in glass-incorporated mortar (GIM) under various types of Na+-contained exposure conditions were investigated by analyzing ASR expansion, compressive strength, and microstructure. As a key result, in comparison to the exposure condition with the same hydroxide OH− concentration, a dramatic increase in ASR-induced expansion can be observed under the mixture condition of 0.5 N-NaOH + 0.5 N-NaCl. SEM/EDX results reveales that Na+ can improve Na/Si ratio of ASR gel, resulting in a higher swelling capacity. The variation of compressive strength under different exposure conditions was also studied, and then interpreted by analysis of pore structure characteristics. This work highlights the role of Na+ ion on ASR under alkaline conditions, leading to more precautions in the manufacture of GIM.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive