Effects of defects on the high-temperature performance of selective laser melting K418 superalloys: An in-situ 3D X-ray analysis

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-11-06 DOI:10.1016/j.matchar.2024.114533
Xiaoxuan Zhang , Xinhao Liu , Rengeng Li , He Wu , Yi Ma , Kesong Miao , Hao Wu , Xuewen Li , Guohua Fan
{"title":"Effects of defects on the high-temperature performance of selective laser melting K418 superalloys: An in-situ 3D X-ray analysis","authors":"Xiaoxuan Zhang ,&nbsp;Xinhao Liu ,&nbsp;Rengeng Li ,&nbsp;He Wu ,&nbsp;Yi Ma ,&nbsp;Kesong Miao ,&nbsp;Hao Wu ,&nbsp;Xuewen Li ,&nbsp;Guohua Fan","doi":"10.1016/j.matchar.2024.114533","DOIUrl":null,"url":null,"abstract":"<div><div>Defects are inevitable in selective laser melting process, significantly impacting the mechanical properties of materials and reducing their service life. In this study, the effects of various defects and their distribution on the high-temperature mechanical performance of the selective laser melted K418 superalloys were investigated via an in-situ 3D X-ray analysis and finite element method. The results showed that the selective laser melting process can significantly enhance the strength of the K418 sample, while degrading the fracture elongation. The sphericity and location of defects are the two key parameters influencing the mechanical performance. The defects with low sphericity at the sub-surface resulted in elevated local stress and strain, accounting for the significant degradation in fracture elongation. Locally increased stress and accumulated strain around lack of fusion defects at the sub-surface contribute to the initiation and propagation of crack. This study provides inspiration for understanding the correlation between the defects and mechanical properties.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114533"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009148","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Defects are inevitable in selective laser melting process, significantly impacting the mechanical properties of materials and reducing their service life. In this study, the effects of various defects and their distribution on the high-temperature mechanical performance of the selective laser melted K418 superalloys were investigated via an in-situ 3D X-ray analysis and finite element method. The results showed that the selective laser melting process can significantly enhance the strength of the K418 sample, while degrading the fracture elongation. The sphericity and location of defects are the two key parameters influencing the mechanical performance. The defects with low sphericity at the sub-surface resulted in elevated local stress and strain, accounting for the significant degradation in fracture elongation. Locally increased stress and accumulated strain around lack of fusion defects at the sub-surface contribute to the initiation and propagation of crack. This study provides inspiration for understanding the correlation between the defects and mechanical properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷对选择性激光熔化 K418 超合金高温性能的影响:原位 3D X 射线分析
缺陷在选择性激光熔化过程中不可避免,会严重影响材料的机械性能并降低其使用寿命。本研究通过原位三维 X 射线分析和有限元法研究了各种缺陷及其分布对选择性激光熔化 K418 超合金高温力学性能的影响。结果表明,选择性激光熔化工艺可显著提高 K418 样品的强度,同时降低断裂伸长率。缺陷的球度和位置是影响力学性能的两个关键参数。次表层球度较低的缺陷导致局部应力和应变升高,是断裂伸长率显著下降的原因。次表层缺乏融合缺陷周围的局部应力增加和应变累积导致了裂纹的产生和扩展。这项研究为理解缺陷与机械性能之间的相关性提供了启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Evolution of microstructures in laser additive manufactured HT-9 ferritic martensitic steel Enhanced mechanical properties of lightweight refractory high-entropy alloys at elevated temperatures via Si addition Effects of ZrC addition on the recrystallization behavior of ZrC-dispersion strengthened FeCrAl alloys Comprehensive analysis of beryllium content influence on secondary electron yield in CuBe alloys Direct observation of the evolution behavior of micro to nanoscale precipitates in austenitic heat-resistant steel via electron channeling contrast imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1