Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-11-09 DOI:10.1016/j.cherd.2024.10.035
Léa Pierrat, Pablo García-Triñanes
{"title":"Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability","authors":"Léa Pierrat,&nbsp;Pablo García-Triñanes","doi":"10.1016/j.cherd.2024.10.035","DOIUrl":null,"url":null,"abstract":"<div><div>This review critically examines the state of the art in furfural production technologies from biomass-derived resources, focusing on recent advancements aimed at enhancing process efficiency. Beginning with an overview of current methodologies, the study explores and maps the diversity of available feedstocks, assessing their suitability for optimised furfural generation. Conversion efficiency is analysed with attention to yield optimisation, highlighting the influence of catalysts, temperature control, and enzymatic processes. Recent advancements in process intensification—such as hybrid systems, heat integration, and innovative technologies—are discussed as key pathways for achieving scalable and sustainable production. A review of techno-economic analysis (TEA) sources assesses the commercial feasibility of furfural production from various feedstocks, with a specific focus on bagasse. Additionally, a review of available life cycle assessments (LCAs) offers insights into the environmental impacts of different production methods, contributing to the sustainable development of the industry. The review concludes by summarising critical findings and identifying research priorities essential for advancing towards the ultimate goal of economically feasible and commercially scalable furfural production from lignocellulosic biomass.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 261-280"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006208","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review critically examines the state of the art in furfural production technologies from biomass-derived resources, focusing on recent advancements aimed at enhancing process efficiency. Beginning with an overview of current methodologies, the study explores and maps the diversity of available feedstocks, assessing their suitability for optimised furfural generation. Conversion efficiency is analysed with attention to yield optimisation, highlighting the influence of catalysts, temperature control, and enzymatic processes. Recent advancements in process intensification—such as hybrid systems, heat integration, and innovative technologies—are discussed as key pathways for achieving scalable and sustainable production. A review of techno-economic analysis (TEA) sources assesses the commercial feasibility of furfural production from various feedstocks, with a specific focus on bagasse. Additionally, a review of available life cycle assessments (LCAs) offers insights into the environmental impacts of different production methods, contributing to the sustainable development of the industry. The review concludes by summarising critical findings and identifying research priorities essential for advancing towards the ultimate goal of economically feasible and commercially scalable furfural production from lignocellulosic biomass.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化木质纤维素生物质的糠醛生产:原料选择、工艺改进以及技术经济和环境可行性
本综述对利用生物质资源生产糠醛的技术现状进行了严格审查,重点关注旨在提高工艺效率的最新进展。本研究首先概述了当前的方法,然后探讨并描绘了现有原料的多样性,评估了它们对优化糠醛生产的适用性。研究分析了转化效率,关注产量优化,强调催化剂、温度控制和酶法工艺的影响。讨论了工艺强化方面的最新进展,如混合系统、热集成和创新技术,这些都是实现可扩展和可持续生产的关键途径。对技术经济分析 (TEA) 来源的审查评估了利用各种原料生产糠醛的商业可行性,并特别关注甘蔗渣。此外,对现有生命周期评估(LCAs)的综述深入分析了不同生产方法对环境的影响,有助于该行业的可持续发展。综述最后总结了重要发现,并确定了研究重点,这对推动实现利用木质纤维素生物质生产经济上可行、商业上可扩展的糠醛这一最终目标至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
The effect of green hydrogen feed rate variations on e-methanol synthesis by dynamic simulation A re-optimized design of mesh-type transition zone for large-scale PEM fuel cells considering two-phase flow distribution Experimental investigation in a forced draft wet cooling tower using aluminum oxide nano particles Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability Coagulative removal of polyethylene microplastics using polyaluminum chloride in conjunction with laminarin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1