Christoph Dösinger , Thomas Hammerschmidt , Oleg Peil , Daniel Scheiber , Lorenz Romaner
{"title":"Descriptors based on the density of states for efficient machine learning of grain-boundary segregation energies","authors":"Christoph Dösinger , Thomas Hammerschmidt , Oleg Peil , Daniel Scheiber , Lorenz Romaner","doi":"10.1016/j.commatsci.2024.113493","DOIUrl":null,"url":null,"abstract":"<div><div>The segregation of alloying elements to grain-boundaries (GB) has a significant impact on mechanical and functional properties of materials. The process is controlled by the segregation energies, that can accurately be computed using ab-initio methods. Over the last years, ab-initio computations have been combined with machine-learning (ML) approaches for a reduction of computational cost. Here, we show how information from the electronic structure can be incorporated in the ML. To obtain the electronic structure we use two methods, (i) density functional theory (DFT), and (ii) a recursive solution of a tight-binding (TB) Hamiltonian. With the derived descriptors we train a linear model and a Gaussian process on ab-initio segregation data from 15 coincident site lattice GBs with <span><math><mi>Σ</mi></math></span>-values up to 43, where the models are compared using cross-validation scores. Both the TB and DFT-derived descriptors are found to clearly outperform common structure-based features that have been used for ML segregation energies before. Furthermore, TB descriptors almost reach the same accuracy as DFT descriptors although their computational effort is significantly reduced. We test our approach on segregation of Ta and Re to GBs in a bcc-W matrix, which are materials of relevance for fusion-energy research.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113493"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007146","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The segregation of alloying elements to grain-boundaries (GB) has a significant impact on mechanical and functional properties of materials. The process is controlled by the segregation energies, that can accurately be computed using ab-initio methods. Over the last years, ab-initio computations have been combined with machine-learning (ML) approaches for a reduction of computational cost. Here, we show how information from the electronic structure can be incorporated in the ML. To obtain the electronic structure we use two methods, (i) density functional theory (DFT), and (ii) a recursive solution of a tight-binding (TB) Hamiltonian. With the derived descriptors we train a linear model and a Gaussian process on ab-initio segregation data from 15 coincident site lattice GBs with -values up to 43, where the models are compared using cross-validation scores. Both the TB and DFT-derived descriptors are found to clearly outperform common structure-based features that have been used for ML segregation energies before. Furthermore, TB descriptors almost reach the same accuracy as DFT descriptors although their computational effort is significantly reduced. We test our approach on segregation of Ta and Re to GBs in a bcc-W matrix, which are materials of relevance for fusion-energy research.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.