Mechanical property prediction of random copolymers using uncertainty-based active learning

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-11-07 DOI:10.1016/j.commatsci.2024.113489
Wei-Che Chang , Zong-Yun Tsai , Chin-Wen Chen , Chi-Hua Yu , Chuin-Shan Chen
{"title":"Mechanical property prediction of random copolymers using uncertainty-based active learning","authors":"Wei-Che Chang ,&nbsp;Zong-Yun Tsai ,&nbsp;Chin-Wen Chen ,&nbsp;Chi-Hua Yu ,&nbsp;Chuin-Shan Chen","doi":"10.1016/j.commatsci.2024.113489","DOIUrl":null,"url":null,"abstract":"<div><div>The copolymer, a widely used material in our daily lives, presents a significant challenge in targeted sequence design. While recent advancements in computational simulation and data science offer a promising avenue for addressing this complex issue, challenges persist in labeled data scarcity. In this study, we introduce an uncertainty-based active learning framework for predicting the properties of random copolymers. We found that the active learning strategy allowed for labeling only 40 data points within the design space of 1550 data points, drastically reducing the labeling efforts by 97%. Most data selected by active learning were positioned on the design space’s periphery, transforming the learning task into an interpolation problem. Through integrating active learning and molecular dynamics, we successfully overcame the combinatorial explosion problem in copolymer sequence design, streamlining the data labeling process and culminating in a highly accurate model. This research demonstrates data science’s potential in polymer design, especially when facing data scarcity.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113489"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007109","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The copolymer, a widely used material in our daily lives, presents a significant challenge in targeted sequence design. While recent advancements in computational simulation and data science offer a promising avenue for addressing this complex issue, challenges persist in labeled data scarcity. In this study, we introduce an uncertainty-based active learning framework for predicting the properties of random copolymers. We found that the active learning strategy allowed for labeling only 40 data points within the design space of 1550 data points, drastically reducing the labeling efforts by 97%. Most data selected by active learning were positioned on the design space’s periphery, transforming the learning task into an interpolation problem. Through integrating active learning and molecular dynamics, we successfully overcame the combinatorial explosion problem in copolymer sequence design, streamlining the data labeling process and culminating in a highly accurate model. This research demonstrates data science’s potential in polymer design, especially when facing data scarcity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于不确定性的主动学习预测无规共聚物的机械性能
共聚物是我们日常生活中广泛使用的材料,它给靶向序列设计带来了巨大挑战。虽然计算模拟和数据科学的最新进展为解决这一复杂问题提供了一条大有可为的途径,但标签数据稀缺的挑战依然存在。在本研究中,我们引入了一个基于不确定性的主动学习框架,用于预测无规共聚物的特性。我们发现,在 1550 个数据点的设计空间中,主动学习策略只需标注 40 个数据点,大大减少了 97% 的标注工作。主动学习选择的大部分数据都位于设计空间的外围,从而将学习任务转化为插值问题。通过整合主动学习和分子动力学,我们成功地克服了共聚物序列设计中的组合爆炸问题,简化了数据标注过程,并最终建立了一个高精度模型。这项研究展示了数据科学在聚合物设计中的潜力,尤其是在面临数据稀缺的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Study of ReaxFF molecular dynamics simulation about chemical reactions mechanisms of magnesium-aluminium spinel polishing Prediction of TMCCs@MoS2 heterostructures with homogeneous surface terminations as promising anodes for sodium and potassium ion batteries Energetic and structural stability of vacancy clusters in Al under external stress conditions Ab initio study of the laser-induced ultrafast spin dynamics on Ni4@C40H34 carbon cross Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1