Jia-Min Lu , Yu-Gan Zhu , Yan-Bin Li , Guang-Wen Chu , Jian-Feng Chen
{"title":"New advance in application research of high-gravity process intensification technology","authors":"Jia-Min Lu , Yu-Gan Zhu , Yan-Bin Li , Guang-Wen Chu , Jian-Feng Chen","doi":"10.1016/j.coche.2024.101057","DOIUrl":null,"url":null,"abstract":"<div><div>Process intensification (PI) has generated considerable interest as a potential avenue for sustainable and green development within the chemical industry. High gravity (HiGee) technology is regarded as a significant breakthrough in PI, as it has possessed the potential to increase the mass transfer rate by ∼1–3 orders of magnitude in comparison to conventional equipment. Rotating packed bed (RPB), as a classical HiGee apparatus, has been proven to have great advantages for application in various chemical engineering fields, for it can provide large contact area between phases, faster surface renewal rate and more homogeneous nucleation sites, and so on. As research on HiGee technology has become more advanced, it is necessary to collate the various studies on the application of HiGee technology in different fields systematically. This work mainly reviews the research progresses of HiGee technology in synthesis of chemicals, preparation of particles, and separation in recent 5 years. Specifically, the latest applications of HiGee technology under different demands and novel structures of RPB designed for various working conditions are presented. Finally, the opportunities and further research directions of the HiGee technology are proposed.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101057"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000583","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Process intensification (PI) has generated considerable interest as a potential avenue for sustainable and green development within the chemical industry. High gravity (HiGee) technology is regarded as a significant breakthrough in PI, as it has possessed the potential to increase the mass transfer rate by ∼1–3 orders of magnitude in comparison to conventional equipment. Rotating packed bed (RPB), as a classical HiGee apparatus, has been proven to have great advantages for application in various chemical engineering fields, for it can provide large contact area between phases, faster surface renewal rate and more homogeneous nucleation sites, and so on. As research on HiGee technology has become more advanced, it is necessary to collate the various studies on the application of HiGee technology in different fields systematically. This work mainly reviews the research progresses of HiGee technology in synthesis of chemicals, preparation of particles, and separation in recent 5 years. Specifically, the latest applications of HiGee technology under different demands and novel structures of RPB designed for various working conditions are presented. Finally, the opportunities and further research directions of the HiGee technology are proposed.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.