Molecular electronic structure calculation via a quantum computer

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL Computational and Theoretical Chemistry Pub Date : 2024-11-04 DOI:10.1016/j.comptc.2024.114945
Hamid Reza Naeij , Erfan Mahmoudi , Hossein Davoodi Yeganeh , Mohsen Akbari
{"title":"Molecular electronic structure calculation via a quantum computer","authors":"Hamid Reza Naeij ,&nbsp;Erfan Mahmoudi ,&nbsp;Hossein Davoodi Yeganeh ,&nbsp;Mohsen Akbari","doi":"10.1016/j.comptc.2024.114945","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum computers can be used to calculate the electronic structure and estimate the ground state energy of many-electron molecular systems. In the present study, we implement the Variational Quantum Eigensolver (VQE) algorithm, as a hybrid quantum–classical algorithm to calculate the ground state energy of the molecules such as H<span><math><msubsup><mrow></mrow><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>, OH<span><math><msup><mrow></mrow><mrow><mo>−</mo></mrow></msup></math></span>, HF and BH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> in which the number of qubits has an increasing trend. We use the parity transformation for fermion to qubit encoding and the Unitary Coupled Cluster for Single and Double excitations (UCCSD) to construct an ansatz. We compare our quantum simulation results with the computational chemistry approaches including Full Configuration Interaction (FCI), as benchmark energy and Unrestricted Hartree–Fock (UHF), as a common computational method. Our results show that there is a good agreement between molecular ground state energy obtained from VQE and FCI. Moreover, the accuracy of the ground state energies obtained from VQE in our work is higher than the previously reported values. This work aims to benchmark the VQE algorithm to calculate the electronic ground state energy for a new set of molecules that can be good candidates for molecular simulation on a real quantum computer.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114945"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004845","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computers can be used to calculate the electronic structure and estimate the ground state energy of many-electron molecular systems. In the present study, we implement the Variational Quantum Eigensolver (VQE) algorithm, as a hybrid quantum–classical algorithm to calculate the ground state energy of the molecules such as H3+, OH, HF and BH3 in which the number of qubits has an increasing trend. We use the parity transformation for fermion to qubit encoding and the Unitary Coupled Cluster for Single and Double excitations (UCCSD) to construct an ansatz. We compare our quantum simulation results with the computational chemistry approaches including Full Configuration Interaction (FCI), as benchmark energy and Unrestricted Hartree–Fock (UHF), as a common computational method. Our results show that there is a good agreement between molecular ground state energy obtained from VQE and FCI. Moreover, the accuracy of the ground state energies obtained from VQE in our work is higher than the previously reported values. This work aims to benchmark the VQE algorithm to calculate the electronic ground state energy for a new set of molecules that can be good candidates for molecular simulation on a real quantum computer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过量子计算机计算分子电子结构
量子计算机可用于计算多电子分子系统的电子结构和估计基态能量。在本研究中,我们采用了变分量子均衡器(VQE)算法,作为一种量子-经典混合算法来计算量子比特数呈上升趋势的 H3+、OH-、HF 和 BH3 等分子的基态能。我们利用费米子到量子比特编码的奇偶校验变换和单双激发单元耦合簇(UCCSD)来构建一个等式。我们将量子模拟结果与计算化学方法进行了比较,包括作为基准能量的全构型相互作用(FCI)和作为常用计算方法的非限制哈特里-福克(UHF)。我们的结果表明,VQE 和 FCI 得出的分子基态能量具有良好的一致性。此外,在我们的工作中,通过 VQE 获得的基态能的精确度高于之前报道的值。这项工作的目的是对 VQE 算法进行基准测试,以计算一组新分子的电子基态能,这些分子可以很好地在实际量子计算机上进行分子模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
期刊最新文献
A quantum investigation of kinetic isotope effects in the Ne + HD+(v=0) → NeH+/NeD+ + D/H reaction DFT insights into multifaceted properties of GaCaX3 (X = Cl, Br, I) inorganic cubic halide perovskites for advanced optoelectronic applications Computational investigation of magnetic field effect on thermal function of diatomic molecules with anharmonic oscillator potential Dopamine interaction with DNA/RNA aptamers: Molecular dynamics simulation Investigating optical, electronic, and thermoelectric properties of X2ScIO6 (X = K, Rb, and Cs) double perovskite semiconductors for green energy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1