{"title":"Influence of π-linkers and electron accepting substitutions on phenothiazine-based D-A-π-A dyes for DSSC applications: A DFT and TDDFT study","authors":"Brahim Hachlaf , Omar Britel , Nuha Wazzan , Adil Touimi Benjelloun , Taoufiq Saffaj","doi":"10.1016/j.comptc.2025.115097","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces the design of a novel series of D-A-π-A organic dyes, achieved by modifying the external acceptor and various π<sub>i</sub>-spacers based on the synthesized dye PTZ15R, aiming to improve the photovoltaic performance of dye-sensitized solar cells (DSSCs). The influence of changing the external acceptor and various π-spacers on the properties of these sensitizers was theoretically investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods to reveal structure-property relationships. Calculations show that replacing the carboxylic group with cyanoacrylic acid and benzene (π<sub>original</sub>) with electron-deficient groups (PTZ15AD1 to PTZ15AD9) significantly reduces the energy gap and broadens the absorption spectrum for all investigated dyes, which will result in higher V<sub>OC</sub> and J<sub>SC</sub> than the reference PTZ15R. These findings suggest that the newly designed dyes are promising sensitizers for DSSCs, with dye PTZ15AD6 being particularly noteworthy due to its planar structure, small energy gap, longer absorption wavelength, excellent chemical reactivity parameters, higher NLO properties, and more significant dipole moment both in isolated and adsorbed states. This theoretical investigation aims to provide new strategies for synthesizing and predicting efficient sensitizers for DSSCs.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1246 ","pages":"Article 115097"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25000337","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research introduces the design of a novel series of D-A-π-A organic dyes, achieved by modifying the external acceptor and various πi-spacers based on the synthesized dye PTZ15R, aiming to improve the photovoltaic performance of dye-sensitized solar cells (DSSCs). The influence of changing the external acceptor and various π-spacers on the properties of these sensitizers was theoretically investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods to reveal structure-property relationships. Calculations show that replacing the carboxylic group with cyanoacrylic acid and benzene (πoriginal) with electron-deficient groups (PTZ15AD1 to PTZ15AD9) significantly reduces the energy gap and broadens the absorption spectrum for all investigated dyes, which will result in higher VOC and JSC than the reference PTZ15R. These findings suggest that the newly designed dyes are promising sensitizers for DSSCs, with dye PTZ15AD6 being particularly noteworthy due to its planar structure, small energy gap, longer absorption wavelength, excellent chemical reactivity parameters, higher NLO properties, and more significant dipole moment both in isolated and adsorbed states. This theoretical investigation aims to provide new strategies for synthesizing and predicting efficient sensitizers for DSSCs.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.