Vapor separation in minichannel heat sink flow boiling application using gradient porous copper ribs

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-14 DOI:10.1016/j.applthermaleng.2024.124930
Liangfeng Wang , Jinxin Zhang , Shufeng Huang
{"title":"Vapor separation in minichannel heat sink flow boiling application using gradient porous copper ribs","authors":"Liangfeng Wang ,&nbsp;Jinxin Zhang ,&nbsp;Shufeng Huang","doi":"10.1016/j.applthermaleng.2024.124930","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of a significant amount of vapor in minichannels severely limits their flow boiling heat transfer performance, posing a challenge for efficient thermal management in high-power electronic devices. To address this issue, we propose an innovative gradient porous copper rib minichannel with a vapor separation function. This design incorporates micro-pore porous copper and open-cell porous copper, where the unique structure of the micro-pore porous copper is crucial for achieving effective vapor separation. This innovative design not only expands the vapor discharge pathways within the minichannel but also significantly enhances the overall efficiency of vapor removal. Using water as the working fluid, flow boiling experiments were conducted across a range of mass fluxes (<em>G</em> = 26.1 kg/(m<sup>2</sup>s) ∼ 156.9 kg/(m<sup>2</sup>s)) and heat fluxes (<em>q<sub>eff</sub></em> = 38.2 kW/m<sup>2</sup> ∼ 267.5 kW/m<sup>2</sup>). The experimental results demonstrate that vapor separation significantly alleviates backflow and enhances heat transfer performance. Specifically, our findings indicate that the average temperature of the heat transfer surface decreases by 0 to 10 °C, while the maximum heat transfer coefficient increases by 2.3 times compared to conventional designs. This work presents a practical and innovative approach to mitigating vapor accumulation in minichannels, providing valuable insights for the design of high-performance minichannel heat sinks.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"259 ","pages":"Article 124930"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025985","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of a significant amount of vapor in minichannels severely limits their flow boiling heat transfer performance, posing a challenge for efficient thermal management in high-power electronic devices. To address this issue, we propose an innovative gradient porous copper rib minichannel with a vapor separation function. This design incorporates micro-pore porous copper and open-cell porous copper, where the unique structure of the micro-pore porous copper is crucial for achieving effective vapor separation. This innovative design not only expands the vapor discharge pathways within the minichannel but also significantly enhances the overall efficiency of vapor removal. Using water as the working fluid, flow boiling experiments were conducted across a range of mass fluxes (G = 26.1 kg/(m2s) ∼ 156.9 kg/(m2s)) and heat fluxes (qeff = 38.2 kW/m2 ∼ 267.5 kW/m2). The experimental results demonstrate that vapor separation significantly alleviates backflow and enhances heat transfer performance. Specifically, our findings indicate that the average temperature of the heat transfer surface decreases by 0 to 10 °C, while the maximum heat transfer coefficient increases by 2.3 times compared to conventional designs. This work presents a practical and innovative approach to mitigating vapor accumulation in minichannels, providing valuable insights for the design of high-performance minichannel heat sinks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用梯度多孔铜肋条在微型通道散热器流沸腾应用中进行蒸汽分离
微型通道中大量蒸汽的积聚严重限制了其流动沸腾传热性能,给大功率电子设备的高效热管理带来了挑战。为解决这一问题,我们提出了一种具有蒸汽分离功能的创新型梯度多孔铜肋微型通道。这种设计结合了微孔多孔铜和开孔多孔铜,其中微孔多孔铜的独特结构对于实现有效的蒸汽分离至关重要。这种创新设计不仅扩大了微型通道内的蒸汽排放途径,还显著提高了蒸汽去除的整体效率。以水为工作流体,在一系列质量通量(G = 26.1 kg/(m2s) ∼ 156.9 kg/(m2s))和热通量(qeff = 38.2 kW/m2 ∼ 267.5 kW/m2)范围内进行了流动沸腾实验。实验结果表明,汽水分离大大缓解了回流现象,提高了传热性能。具体而言,我们的研究结果表明,与传统设计相比,传热表面的平均温度降低了 0 到 10 °C,而最大传热系数则提高了 2.3 倍。这项研究提出了一种实用的创新方法来缓解微型通道中的蒸汽积聚,为高性能微型通道散热器的设计提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Vortex-enhanced jet impingement and the role of impulse generation rate in heat removal using additively manufactured synthetic jet devices Experimental study and simulation of the rectifier nozzle-type critical distributor applied to the application of row tube plate instant freezer High temperature in-situ 3D monitor of microstructure evolution and heat transfer performance of metal foam Pulverization of municipal solid waste and utilization of pulverized product as alternative fuel for blast furnace injection Flow boiling of HFE-7100 for cooling Multi-Chip modules using manifold microchannels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1