Defect detection in III-V multijunction solar cells using reverse-bias stress tests

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-14 DOI:10.1016/j.solmat.2024.113286
A. Cano , I. Rey-Stolle , P. Martín , V. Braza , D. Fernandez , I. García
{"title":"Defect detection in III-V multijunction solar cells using reverse-bias stress tests","authors":"A. Cano ,&nbsp;I. Rey-Stolle ,&nbsp;P. Martín ,&nbsp;V. Braza ,&nbsp;D. Fernandez ,&nbsp;I. García","doi":"10.1016/j.solmat.2024.113286","DOIUrl":null,"url":null,"abstract":"<div><div>Reverse biasing triple-junction GaInP/Ga(In)As/Ge solar cells may affect their performance by the formation of permanent shunts even if the reverse breakdown voltage is not reached. In previous works, it was observed that, amid the three components, GaInP subcells are more prone to degrade when reverse biased suffering permanent damage, although they present an initial good performance. The aim of this work is, firstly, to study the characteristics of the defects that cause the catastrophic failure of the devices. For this, GaInP isotype solar cells were analysed by visual inspection and electroluminescence maps and submitted to reverse bias stress test. We find that specific growth defects (i.e. hillocks), when covered with metal, cause the degradation in the cells. SEM cross-section imaging and EDX compositional analysis of these defects reveal their complex structures, which in essence consist of material abnormally grown on and around particles present on the wafer surface before growth. The reverse bias stress test is proposed as a screening method to spot defects hidden under the metal that may not be detected by conventional screening methods. By applying a quick reverse bias stress test, we can detect those defects that cause the degradation of devices at voltages below the breakdown voltage and that may also affect their long-term reliability.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113286"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse biasing triple-junction GaInP/Ga(In)As/Ge solar cells may affect their performance by the formation of permanent shunts even if the reverse breakdown voltage is not reached. In previous works, it was observed that, amid the three components, GaInP subcells are more prone to degrade when reverse biased suffering permanent damage, although they present an initial good performance. The aim of this work is, firstly, to study the characteristics of the defects that cause the catastrophic failure of the devices. For this, GaInP isotype solar cells were analysed by visual inspection and electroluminescence maps and submitted to reverse bias stress test. We find that specific growth defects (i.e. hillocks), when covered with metal, cause the degradation in the cells. SEM cross-section imaging and EDX compositional analysis of these defects reveal their complex structures, which in essence consist of material abnormally grown on and around particles present on the wafer surface before growth. The reverse bias stress test is proposed as a screening method to spot defects hidden under the metal that may not be detected by conventional screening methods. By applying a quick reverse bias stress test, we can detect those defects that cause the degradation of devices at voltages below the breakdown voltage and that may also affect their long-term reliability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反向偏压测试检测 III-V 多结太阳能电池中的缺陷
对三重结 GaInP/Ga(In)As/Ge 太阳能电池进行反向偏压,即使没有达到反向击穿电压,也可能会形成永久分流,从而影响其性能。在以前的研究中,我们发现,在这三种成分中,GaInP 子电池在反向偏压时更容易退化,遭受永久性损坏,尽管它们最初性能良好。这项工作的目的首先是研究导致器件灾难性失效的缺陷特征。为此,我们通过目测和电致发光图分析了 GaInP 异型太阳能电池,并对其进行了反向偏压测试。我们发现,特定的生长缺陷(即山丘)在被金属覆盖后会导致电池降解。对这些缺陷的 SEM 截面成像和 EDX 成分分析揭示了它们的复杂结构,其实质是由异常生长在生长前晶片表面颗粒上和颗粒周围的材料组成。反向偏置应力测试是一种筛选方法,用于发现隐藏在金属下的缺陷,传统筛选方法可能无法检测到这些缺陷。通过快速反向偏压应力测试,我们可以检测出那些在电压低于击穿电压时会导致器件性能下降并可能影响其长期可靠性的缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1