Xiangyang Zhao, Lingling Wang, Yawei Wang, Xingyu Zhang, Rong Fang, Yue Zhou, Rui Guo, Xintong Zhang, Yichun Liu
{"title":"Decreased interface defects in Cu2ZnSn(S,Se)4 solar cells via Cd2+&Ag+ double-ion interface deposition","authors":"Xiangyang Zhao, Lingling Wang, Yawei Wang, Xingyu Zhang, Rong Fang, Yue Zhou, Rui Guo, Xintong Zhang, Yichun Liu","doi":"10.1016/j.solmat.2024.113290","DOIUrl":null,"url":null,"abstract":"<div><div>Kesterite Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) thin film solar cells are considered a promising new type of film cell, due to their rich elemental reservation and excellent photovoltaic performance. However, the deleterious defects at the heterojunction interface severely hinder charge transport, separation, and extraction, significantly limiting the photovoltaic performance of CZTSSe solar cells. In this study, a simple method involving the incorporation of Cd<sup>2+</sup> and Ag <sup>+</sup> dual-ion at the heterojunction interface was proposed to reduce interfacial defects. The results showed that Cd<sup>2+</sup> and Ag <sup>+</sup> dual-ion interface deposition effectively reduced the [2Cu<sub>zn</sub> + Sn<sub>zn</sub>] harmful defects near the heterojunction interface and subsequently reduced the number of recombination centers in the interface. This led to improved carrier recombination at the interface. Meanwhile, the devices achieved a wider depletion width, which was more favorable for carrier collection. Ultimately, the conversion efficiency increased by 32.81 %. This simple interface dual-ion deposition strategy offers a promising strategy for further enhancing the efficiency of CZTSSe cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113290"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824006020","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells are considered a promising new type of film cell, due to their rich elemental reservation and excellent photovoltaic performance. However, the deleterious defects at the heterojunction interface severely hinder charge transport, separation, and extraction, significantly limiting the photovoltaic performance of CZTSSe solar cells. In this study, a simple method involving the incorporation of Cd2+ and Ag + dual-ion at the heterojunction interface was proposed to reduce interfacial defects. The results showed that Cd2+ and Ag + dual-ion interface deposition effectively reduced the [2Cuzn + Snzn] harmful defects near the heterojunction interface and subsequently reduced the number of recombination centers in the interface. This led to improved carrier recombination at the interface. Meanwhile, the devices achieved a wider depletion width, which was more favorable for carrier collection. Ultimately, the conversion efficiency increased by 32.81 %. This simple interface dual-ion deposition strategy offers a promising strategy for further enhancing the efficiency of CZTSSe cells.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.