{"title":"Testing and rating of vehicle-integrated photovoltaics: Scientific background","authors":"Kenji Araki, Yasuyuki Ota, Kensuke Nishioka","doi":"10.1016/j.solmat.2024.113241","DOIUrl":null,"url":null,"abstract":"<div><div>We need to rush into the international standardization of the performance of VIPV. IEC TC82 PT600 and WG2 group carry out the standardization discussion. This work covers the scientific aspects behind the standardization. It consists of three layers: (1) Performance testing VIPV or curved PV modules by reproducible measurements; (2) Outdoor performance validation and correction modeling; (3) Energy rating. Unlike other PV installations, the relative position of the sun and its shading objects quickly and frequently moves so that the repeatable evaluation of the performance of VIPV was challenging. As a result of scientists and testing engineers worldwide, (1) we could develop a new testing protocol for the curved PV modules, (2) we observed the different performances in the curved photovoltaic modules and succeeded in reproducing in a simple numerical model, and (3) we developed Excel-level calculation methods for shading and partial-shading impact to irradiation onto photovoltaic modules on vehicles.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113241"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005531","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
We need to rush into the international standardization of the performance of VIPV. IEC TC82 PT600 and WG2 group carry out the standardization discussion. This work covers the scientific aspects behind the standardization. It consists of three layers: (1) Performance testing VIPV or curved PV modules by reproducible measurements; (2) Outdoor performance validation and correction modeling; (3) Energy rating. Unlike other PV installations, the relative position of the sun and its shading objects quickly and frequently moves so that the repeatable evaluation of the performance of VIPV was challenging. As a result of scientists and testing engineers worldwide, (1) we could develop a new testing protocol for the curved PV modules, (2) we observed the different performances in the curved photovoltaic modules and succeeded in reproducing in a simple numerical model, and (3) we developed Excel-level calculation methods for shading and partial-shading impact to irradiation onto photovoltaic modules on vehicles.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.