Seokhyeon Hong, Youngsoo Kim, Seung Hyeon Hong, Bokyung Kim, Soon-Hong Kwon
{"title":"Ultrahigh quality factor cavity based on double dielectric nanocylinder metasurfaces","authors":"Seokhyeon Hong, Youngsoo Kim, Seung Hyeon Hong, Bokyung Kim, Soon-Hong Kwon","doi":"10.1016/j.cjph.2024.10.036","DOIUrl":null,"url":null,"abstract":"<div><div>An optical cavity with a high quality factor (Q-factor) is essential for a wide range of applications, including lasers, single-photon sources, optical filters, and sensors. A high Q-factor cavity can enhance the interaction between light and materials, thereby improving the performance of optical devices. The Fabry–Pérot (FP) cavity is a typical optical device capable of achieving a high Q-factor; however, it often relies on distributed Bragg reflectors, which increase the size of the optical device. In recent years, Mie scattering-based metasurfaces with high reflectivity have been studied as alternatives to distributed Bragg reflectors. We propose a scattering-based FP cavity consisting of two metasurface layers. In our structure, a FP cavity with high reflectivity is formed by back-forward scattering from a single dielectric cylinder array. Our findings show that the structure exhibits a Q-factor of 4.36 × 10<sup>10</sup> when the period and gap size are 658.8 nm and 740 nm, respectively. This high Q-factor is maintained even with misalignment between the two layers. Additionally, we confirmed that a high Q-factor of 2.6 × 10<sup>6</sup> appears in the low-index substrate structure, with the Q-factor increasing with the number of double cylinders in the finite structure. We also observed a strong directionality in the z-axis direction when examining the far field. We designed the dielectric FP cavity with a subwavelength thickness, is expected to significantly contribute to enhancing the Q-factors of various types of optical cavities.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 1133-1143"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004271","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An optical cavity with a high quality factor (Q-factor) is essential for a wide range of applications, including lasers, single-photon sources, optical filters, and sensors. A high Q-factor cavity can enhance the interaction between light and materials, thereby improving the performance of optical devices. The Fabry–Pérot (FP) cavity is a typical optical device capable of achieving a high Q-factor; however, it often relies on distributed Bragg reflectors, which increase the size of the optical device. In recent years, Mie scattering-based metasurfaces with high reflectivity have been studied as alternatives to distributed Bragg reflectors. We propose a scattering-based FP cavity consisting of two metasurface layers. In our structure, a FP cavity with high reflectivity is formed by back-forward scattering from a single dielectric cylinder array. Our findings show that the structure exhibits a Q-factor of 4.36 × 1010 when the period and gap size are 658.8 nm and 740 nm, respectively. This high Q-factor is maintained even with misalignment between the two layers. Additionally, we confirmed that a high Q-factor of 2.6 × 106 appears in the low-index substrate structure, with the Q-factor increasing with the number of double cylinders in the finite structure. We also observed a strong directionality in the z-axis direction when examining the far field. We designed the dielectric FP cavity with a subwavelength thickness, is expected to significantly contribute to enhancing the Q-factors of various types of optical cavities.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.