Natural language processing in finance: A survey

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-10-28 DOI:10.1016/j.inffus.2024.102755
Kelvin Du , Yazhi Zhao , Rui Mao , Frank Xing , Erik Cambria
{"title":"Natural language processing in finance: A survey","authors":"Kelvin Du ,&nbsp;Yazhi Zhao ,&nbsp;Rui Mao ,&nbsp;Frank Xing ,&nbsp;Erik Cambria","doi":"10.1016/j.inffus.2024.102755","DOIUrl":null,"url":null,"abstract":"<div><div>This survey presents an in-depth review of the transformative role of Natural Language Processing (NLP) in finance, highlighting its impact on ten major financial applications: (1) financial sentiment analysis, (2) financial narrative processing, (3) financial forecasting, (4) portfolio management, (5) question answering, virtual assistant and chatbot, (6) risk management, (7) regulatory compliance monitoring, (8) Environmental, Social, Governance (ESG) and sustainable finance, (9) explainable artificial intelligence (XAI) in finance and (10) NLP for digital assets. With the integration of vast amounts of unstructured financial data and advanced NLP techniques, the study explores how NLP enables data-driven decision-making and innovation in the financial sector, alongside the limitations and challenges. By providing a comprehensive analysis of NLP applications combining both academic and industrial perspectives, this study postulates the future trends and evolution of financial services. It introduces a unique review framework to understand the interaction of financial data and NLP technologies systematically and outlines the key drivers, transformations, and emerging areas in this field. This survey targets researchers, practitioners, and professionals, aiming to close their knowledge gap by highlighting the significance and future direction of NLP in enhancing financial services.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102755"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005335","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This survey presents an in-depth review of the transformative role of Natural Language Processing (NLP) in finance, highlighting its impact on ten major financial applications: (1) financial sentiment analysis, (2) financial narrative processing, (3) financial forecasting, (4) portfolio management, (5) question answering, virtual assistant and chatbot, (6) risk management, (7) regulatory compliance monitoring, (8) Environmental, Social, Governance (ESG) and sustainable finance, (9) explainable artificial intelligence (XAI) in finance and (10) NLP for digital assets. With the integration of vast amounts of unstructured financial data and advanced NLP techniques, the study explores how NLP enables data-driven decision-making and innovation in the financial sector, alongside the limitations and challenges. By providing a comprehensive analysis of NLP applications combining both academic and industrial perspectives, this study postulates the future trends and evolution of financial services. It introduces a unique review framework to understand the interaction of financial data and NLP technologies systematically and outlines the key drivers, transformations, and emerging areas in this field. This survey targets researchers, practitioners, and professionals, aiming to close their knowledge gap by highlighting the significance and future direction of NLP in enhancing financial services.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金融领域的自然语言处理:调查
本调查报告深入评述了自然语言处理(NLP)在金融领域的变革性作用,重点介绍了其对十大金融应用的影响:(1)金融情感分析;(2)金融叙事处理;(3)金融预测;(4)投资组合管理;(5)问题解答、虚拟助理和聊天机器人;(6)风险管理;(7)监管合规监测;(8)环境、社会、治理(ESG)和可持续金融;(9)金融领域的可解释人工智能(XAI);(10)数字资产的NLP。随着大量非结构化金融数据与先进的NLP技术的融合,本研究探讨了NLP如何在金融领域实现数据驱动决策和创新,以及其局限性和挑战。本研究结合学术界和工业界的观点,对 NLP 应用进行了全面分析,从而预测了金融服务的未来趋势和演变。它引入了一个独特的审查框架,以系统地了解金融数据与 NLP 技术的互动,并概述了该领域的关键驱动因素、变革和新兴领域。本调查面向研究人员、从业人员和专业人士,旨在通过强调 NLP 在提升金融服务方面的意义和未来发展方向,弥补他们的知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Optimizing the environmental design and management of public green spaces: Analyzing urban infrastructure and long-term user experience with a focus on streetlight density in the city of Las Vegas, NV DF-BSFNet: A bilateral synergistic fusion network with novel dynamic flow convolution for robust road extraction KDFuse: A high-level vision task-driven infrared and visible image fusion method based on cross-domain knowledge distillation SelfFed: Self-adaptive Federated Learning with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and Enhance Training Efficiency DEMO: A Dynamics-Enhanced Learning Model for multi-horizon trajectory prediction in autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1