{"title":"Dual-objective optimization of solar driven alkaline electrolyzer system for on-site hydrogen production and storage: Current and future scenarios","authors":"H. Tebibel","doi":"10.1016/j.renene.2024.121784","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving cost competitiveness of renewable hydrogen could accelerate the transition to the deeply decarbonized energy system. In this article, we develop and apply a dual-objective optimization model to explore the photovoltaic (PV) hydrogen production pathway and costs development from the present through 2050. The model is applied for optimal capacity allocation of the megawatt-scale off-grid PV-Hydrogen system to achieve maximum production at the minimal levelized cost of hydrogen (LCOH). Methodology includes a smoothing control strategy. Simulation is performed utilizing measured meteorological data for one year with hourly resolution and considering electrolyzer's load flexibility constraint. It has been found that the smoothing control strategy is indispensable for maximizing PV energy utilization, enhancing the electrolyzer's capacity factor and reducing the power curtailments. The analysis shows that the off-grid solar hydrogen in Algeria lacks economic competitiveness currently. Components CAPEX reduction turns out to be the fundamental condition towards the future LCOH decrease. LCOH could decline from 4.2 $/kg in 2025 to 2.24 $/kg in 2050 under central assumptions and to roughly 1.4 $/kg under optimistic assumptions. Alkaline electrolysis step cost could reduce by 0.28 $/kg every decade. Hydrogen storage autonomy could rise the LCOH by 7.1 c$ per day of autonomy in 2050.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121784"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018524","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving cost competitiveness of renewable hydrogen could accelerate the transition to the deeply decarbonized energy system. In this article, we develop and apply a dual-objective optimization model to explore the photovoltaic (PV) hydrogen production pathway and costs development from the present through 2050. The model is applied for optimal capacity allocation of the megawatt-scale off-grid PV-Hydrogen system to achieve maximum production at the minimal levelized cost of hydrogen (LCOH). Methodology includes a smoothing control strategy. Simulation is performed utilizing measured meteorological data for one year with hourly resolution and considering electrolyzer's load flexibility constraint. It has been found that the smoothing control strategy is indispensable for maximizing PV energy utilization, enhancing the electrolyzer's capacity factor and reducing the power curtailments. The analysis shows that the off-grid solar hydrogen in Algeria lacks economic competitiveness currently. Components CAPEX reduction turns out to be the fundamental condition towards the future LCOH decrease. LCOH could decline from 4.2 $/kg in 2025 to 2.24 $/kg in 2050 under central assumptions and to roughly 1.4 $/kg under optimistic assumptions. Alkaline electrolysis step cost could reduce by 0.28 $/kg every decade. Hydrogen storage autonomy could rise the LCOH by 7.1 c$ per day of autonomy in 2050.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.