{"title":"Data-centric predictive control with tuna swarm optimization-backpropagation neural networks for enhanced wind turbine performance","authors":"Wei Li, Ravi Kumar Pandit","doi":"10.1016/j.renene.2024.121821","DOIUrl":null,"url":null,"abstract":"<div><div>Wind energy is a significant renewable resource, but its efficient harnessing requires advanced control systems. This study presents a Data-Centric Predictive Control (DPC) system, enhanced by a Tuna Swarm Optimization-Backpropagation Neural Network (TSO-BPNN) for predictive wind turbine control. It's like a smart tool that uses innovative fusion of deep learning, predictive Control, and reinforcement learning. Unlike traditional control methods, the proposed approach uses real-time data to optimize turbine performance in response to fluctuating wind conditions.</div><div>The system is validated using simulations on the FAST platform, which demonstrate its superior performance in two critical operational regions. Specifically, in Region II, where the objective is to maximize power extraction from the wind, the DPC achieves a 1.07 % reduction in overshoot and an improvement of 36.14 units in steady-state error compared to traditional methods. The response time remains comparable to existing Model Predictive Control (MPC) strategies, ensuring real-time applicability without sacrificing efficiency. In Region III, where maintaining constant power output is crucial, the DPC outperforms both the baseline and MPC methods, reducing overshoot by 0.58 % and improving accuracy by 17.27 units compared to the baseline method. These results highlight the effectiveness of the proposed DPC system in optimizing turbine performance under variable wind conditions, offering a significant improvement over traditional methods in both accuracy and control precision.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121821"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018895","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Wind energy is a significant renewable resource, but its efficient harnessing requires advanced control systems. This study presents a Data-Centric Predictive Control (DPC) system, enhanced by a Tuna Swarm Optimization-Backpropagation Neural Network (TSO-BPNN) for predictive wind turbine control. It's like a smart tool that uses innovative fusion of deep learning, predictive Control, and reinforcement learning. Unlike traditional control methods, the proposed approach uses real-time data to optimize turbine performance in response to fluctuating wind conditions.
The system is validated using simulations on the FAST platform, which demonstrate its superior performance in two critical operational regions. Specifically, in Region II, where the objective is to maximize power extraction from the wind, the DPC achieves a 1.07 % reduction in overshoot and an improvement of 36.14 units in steady-state error compared to traditional methods. The response time remains comparable to existing Model Predictive Control (MPC) strategies, ensuring real-time applicability without sacrificing efficiency. In Region III, where maintaining constant power output is crucial, the DPC outperforms both the baseline and MPC methods, reducing overshoot by 0.58 % and improving accuracy by 17.27 units compared to the baseline method. These results highlight the effectiveness of the proposed DPC system in optimizing turbine performance under variable wind conditions, offering a significant improvement over traditional methods in both accuracy and control precision.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.