G. Agate , F. Colucci , N. Luciano , E. Marrasso , C. Martone , G. Pallotta , C. Roselli , M. Sasso , G. Squarzoni
{"title":"Multi-software based dynamic modelling of a water-to-water heat pump interacting with an aquifer thermal energy storage system","authors":"G. Agate , F. Colucci , N. Luciano , E. Marrasso , C. Martone , G. Pallotta , C. Roselli , M. Sasso , G. Squarzoni","doi":"10.1016/j.renene.2024.121795","DOIUrl":null,"url":null,"abstract":"<div><div>Aquifer thermal energy storage systems may support the decarbonization of heating and cooling energy needs of urban areas, not only in heating-dominated countries but also in Southern Europe. In this framework, this work investigates the adoption of an electric-driven heat pump interacting with an aquifer and activating a small-scale district heating and cooling network serving a mixed-use district of eight residential and office buildings in Rome (Italy). The dynamic behaviour of aquifer was replicated using the GeoSIAM software. Energy conversion systems and users’ thermal and cooling loads were simulated in TRNSYS 18. The dynamic models were integrated using an iterative approach based on conditions regarding plant operation and injection temperature in wells. The proposed solution was compared from the energy and environmental perspective with a traditional system without aquifer. In addition, the balance between heating and cooling mode operation was assessed. The results obtained encourage the adoption of aquifer thermal energy storage systems in Central Italy. Indeed, the primary energy saving, and the carbon dioxide emissions avoided are equal to 18 %, whereas the imbalance between cooling and heating loads is limited to −5.2 %.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121795"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018639","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Aquifer thermal energy storage systems may support the decarbonization of heating and cooling energy needs of urban areas, not only in heating-dominated countries but also in Southern Europe. In this framework, this work investigates the adoption of an electric-driven heat pump interacting with an aquifer and activating a small-scale district heating and cooling network serving a mixed-use district of eight residential and office buildings in Rome (Italy). The dynamic behaviour of aquifer was replicated using the GeoSIAM software. Energy conversion systems and users’ thermal and cooling loads were simulated in TRNSYS 18. The dynamic models were integrated using an iterative approach based on conditions regarding plant operation and injection temperature in wells. The proposed solution was compared from the energy and environmental perspective with a traditional system without aquifer. In addition, the balance between heating and cooling mode operation was assessed. The results obtained encourage the adoption of aquifer thermal energy storage systems in Central Italy. Indeed, the primary energy saving, and the carbon dioxide emissions avoided are equal to 18 %, whereas the imbalance between cooling and heating loads is limited to −5.2 %.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.