Validation through internal flow physics of response surface methodology optimized mixed flow pump as turbine

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2024-11-07 DOI:10.1016/j.renene.2024.121838
Xu Zhou , Sun Sheng Yang , Punit Singh , Ling Zhou
{"title":"Validation through internal flow physics of response surface methodology optimized mixed flow pump as turbine","authors":"Xu Zhou ,&nbsp;Sun Sheng Yang ,&nbsp;Punit Singh ,&nbsp;Ling Zhou","doi":"10.1016/j.renene.2024.121838","DOIUrl":null,"url":null,"abstract":"<div><div>In order to determine the optimal working efficiency of mixed flow pumps as turbine (MF-PAT) under a design condition of 10m3kw, this study takes the number of blades, blade wrap angle, impeller outer diameter, and impeller inlet width as design variables. Based on the center combination design method, experimental scheme design is carried out, and the head, shaft power, and efficiency of the turbine are used as evaluation indicators. A response surface model is constructed for optimization analysis, and the optimal geometric parameter combination of the impeller for MF-PAT is determined. For MF-PAT with forward-curved blade impeller in this paper, the optimal parameter combination is recommended as blade number Z = 6, blade wrap angle <span><math><mrow><mi>α</mi></mrow></math></span> = 47°, impeller outer diameter D<sub>2</sub> = 140 mm and impeller inlet width b<sub>2</sub> = 34 mm. The results show that compared with the original scheme, its efficiency has increased by 7.8 %. The established response surface model can reflect the relationship between evaluation indicators and design variables, and can be used for optimizing the geometric parameters of MF-PAT impellers. It can effectively enhance the blade's constraint ability on liquid flow, reduce hydraulic losses, and improve the performance of MF-PAT. Apply the n<sub>s</sub>-d<sub>s</sub> methodology for this and future mixed flow optimized pumps as turbines.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121838"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019062","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to determine the optimal working efficiency of mixed flow pumps as turbine (MF-PAT) under a design condition of 10m3kw, this study takes the number of blades, blade wrap angle, impeller outer diameter, and impeller inlet width as design variables. Based on the center combination design method, experimental scheme design is carried out, and the head, shaft power, and efficiency of the turbine are used as evaluation indicators. A response surface model is constructed for optimization analysis, and the optimal geometric parameter combination of the impeller for MF-PAT is determined. For MF-PAT with forward-curved blade impeller in this paper, the optimal parameter combination is recommended as blade number Z = 6, blade wrap angle α = 47°, impeller outer diameter D2 = 140 mm and impeller inlet width b2 = 34 mm. The results show that compared with the original scheme, its efficiency has increased by 7.8 %. The established response surface model can reflect the relationship between evaluation indicators and design variables, and can be used for optimizing the geometric parameters of MF-PAT impellers. It can effectively enhance the blade's constraint ability on liquid flow, reduce hydraulic losses, and improve the performance of MF-PAT. Apply the ns-ds methodology for this and future mixed flow optimized pumps as turbines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过响应面方法优化混流泵作为涡轮机的内部流动物理学验证
为了确定混流泵作为涡轮机(MF-PAT)在 10m3kw 设计条件下的最佳工作效率,本研究以叶片数、叶片包角、叶轮外径和叶轮入口宽度为设计变量。以中心组合设计法为基础,进行试验方案设计,以水轮机的扬程、轴功率和效率作为评价指标。建立响应面模型进行优化分析,确定了 MF-PAT 叶轮的最佳几何参数组合。对于采用前弯叶片叶轮的 MF-PAT,本文推荐的最佳参数组合为叶片数 Z = 6,叶片包角 α = 47°,叶轮外径 D2 = 140 mm,叶轮入口宽度 b2 = 34 mm。结果表明,与原方案相比,其效率提高了 7.8%。所建立的响应面模型能够反映评价指标与设计变量之间的关系,可用于优化 MF-PAT 叶轮的几何参数。它能有效增强叶片对液流的约束能力,减少水力损失,提高 MF-PAT 的性能。将 ns-ds 方法应用于该混流优化泵和未来的涡轮机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Broadband efficient light-absorbing SS-PPy@CNT membranes prepared by electrochemical deposition for photothermal conversion Multi-objective optimization of geothermal heating systems based on thermal economy and environmental impact evaluation Dynamic response and power performance of a combined semi-submersible floating wind turbine and point absorber wave energy converter array Rural energy poverty alleviation in OECD nations: An integrated analysis of renewable energy, green taxation, and the United Nations agenda 2030 Spectral correction of photovoltaic module electrical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1