{"title":"Enhancing photovoltaic MPPT with P&O algorithm performance based on adaptive PID control using exponential forgetting recursive least squares method","authors":"Meena E. Girgis , Nasr A. Elkhateeb","doi":"10.1016/j.renene.2024.121801","DOIUrl":null,"url":null,"abstract":"<div><div>To maximize power transfer from the PV panel, a Perturb and Observe (P&O) algorithm and a feedback controller are used to create the Maximum Power Point Tracking (MPPT) algorithm. The dynamic performance of the MPPT algorithm depends on the feedback controller’s ability to track the PV panel voltage to the reference voltage from the <span><math><mtext>P&O</mtext></math></span> algorithm. This research introduces an adaptive Proportional-Integral-Derivative (PID) controller that improves the dynamic characteristics of the MPPT algorithm. The proposed adaptive control technique utilizes a PID controller and the exponential forgetting recursive least squares (EFRLS) algorithm to update the PID gains online. The verification process involves simulations under three scenarios: slow and fast variations in temperature, solar insolation, resistive load, and partial shading situations. The proposed adaptive PID controller performs robustly during tracking PV panel voltage under different atmospheric conditions.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121801"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096014812401869X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To maximize power transfer from the PV panel, a Perturb and Observe (P&O) algorithm and a feedback controller are used to create the Maximum Power Point Tracking (MPPT) algorithm. The dynamic performance of the MPPT algorithm depends on the feedback controller’s ability to track the PV panel voltage to the reference voltage from the algorithm. This research introduces an adaptive Proportional-Integral-Derivative (PID) controller that improves the dynamic characteristics of the MPPT algorithm. The proposed adaptive control technique utilizes a PID controller and the exponential forgetting recursive least squares (EFRLS) algorithm to update the PID gains online. The verification process involves simulations under three scenarios: slow and fast variations in temperature, solar insolation, resistive load, and partial shading situations. The proposed adaptive PID controller performs robustly during tracking PV panel voltage under different atmospheric conditions.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.