{"title":"Efficient separation and recovery of cobalt from grinding waste of cemented carbide using a sulfuric acid-sodium persulfate mixed solution","authors":"Shufen Liu, Shichang Song, Kai Tang, Longgang Ye","doi":"10.1016/j.hydromet.2024.106419","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical processing of cemented carbide often generates a considerable amount of grinding waste from cemented carbide (GWCC), which serves as an important secondary resource for recovering Co and W. However, efficient separation of tungsten carbide (WC) and Co from GWCC remains challenging. This study tested an efficient process for separating Co from GWCC using a mixed solution of H<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. Under optimum conditions of 20 g/L H<sub>2</sub>SO<sub>4</sub>, 30 g/L Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, 60 °C, and 1 h, the leaching efficiency of Co reached 97.0 %, compared to only 58.6 % when using H<sub>2</sub>SO<sub>4</sub> alone. The kinetics of Co leaching in H<sub>2</sub>SO<sub>4</sub> and H<sub>2</sub>SO<sub>4</sub>-Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> solutions were determined to be a combination of chemical reaction control and diffusion control, suggesting that Co leaching rate in H<sub>2</sub>SO<sub>4</sub> solution is significantly enhanced by introducing Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. Finally, complete recovery of Co was achieved, and pure Co powder with a flower-cluster morphology was prepared from the leaching solution through oxalic acid precipitation followed by vacuum pyrolysis. The regenerative WC and Co powder can be recycled for cemented carbide production.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"231 ","pages":"Article 106419"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24001592","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical processing of cemented carbide often generates a considerable amount of grinding waste from cemented carbide (GWCC), which serves as an important secondary resource for recovering Co and W. However, efficient separation of tungsten carbide (WC) and Co from GWCC remains challenging. This study tested an efficient process for separating Co from GWCC using a mixed solution of H2SO4-Na2S2O8. Under optimum conditions of 20 g/L H2SO4, 30 g/L Na2S2O8, 60 °C, and 1 h, the leaching efficiency of Co reached 97.0 %, compared to only 58.6 % when using H2SO4 alone. The kinetics of Co leaching in H2SO4 and H2SO4-Na2S2O8 solutions were determined to be a combination of chemical reaction control and diffusion control, suggesting that Co leaching rate in H2SO4 solution is significantly enhanced by introducing Na2S2O8. Finally, complete recovery of Co was achieved, and pure Co powder with a flower-cluster morphology was prepared from the leaching solution through oxalic acid precipitation followed by vacuum pyrolysis. The regenerative WC and Co powder can be recycled for cemented carbide production.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.