Latent diffusion model for conditional reservoir facies generation

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-11-01 DOI:10.1016/j.cageo.2024.105750
Daesoo Lee , Oscar Ovanger , Jo Eidsvik , Erlend Aune , Jacob Skauvold , Ragnar Hauge
{"title":"Latent diffusion model for conditional reservoir facies generation","authors":"Daesoo Lee ,&nbsp;Oscar Ovanger ,&nbsp;Jo Eidsvik ,&nbsp;Erlend Aune ,&nbsp;Jacob Skauvold ,&nbsp;Ragnar Hauge","doi":"10.1016/j.cageo.2024.105750","DOIUrl":null,"url":null,"abstract":"<div><div>Creating accurate and geologically realistic reservoir facies based on limited measurements is crucial for field development and reservoir management, especially in the oil and gas sector. Traditional two-point geostatistics, while foundational, often struggle to capture complex geological patterns. Multi-point statistics offers more flexibility, but comes with its own challenges related to pattern configurations and storage limits. With the rise of Generative Adversarial Networks (GANs) and their success in various fields, there has been a shift towards using them for facies generation. However, recent advances in the computer vision domain have shown the superiority of diffusion models over GANs. Motivated by this, a novel Latent Diffusion Model is proposed, which is specifically designed for conditional generation of reservoir facies. The proposed model produces high-fidelity facies realizations that rigorously preserve conditioning data. It significantly outperforms a GAN-based alternative. Our implementation on GitHub: <span><span>github.com/ML4ITS/Latent-Diffusion-Model-for-Conditional-Reservoir-Facies-Generation</span><svg><path></path></svg></span></div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"194 ","pages":"Article 105750"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002334","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Creating accurate and geologically realistic reservoir facies based on limited measurements is crucial for field development and reservoir management, especially in the oil and gas sector. Traditional two-point geostatistics, while foundational, often struggle to capture complex geological patterns. Multi-point statistics offers more flexibility, but comes with its own challenges related to pattern configurations and storage limits. With the rise of Generative Adversarial Networks (GANs) and their success in various fields, there has been a shift towards using them for facies generation. However, recent advances in the computer vision domain have shown the superiority of diffusion models over GANs. Motivated by this, a novel Latent Diffusion Model is proposed, which is specifically designed for conditional generation of reservoir facies. The proposed model produces high-fidelity facies realizations that rigorously preserve conditioning data. It significantly outperforms a GAN-based alternative. Our implementation on GitHub: github.com/ML4ITS/Latent-Diffusion-Model-for-Conditional-Reservoir-Facies-Generation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
条件储层面生成的潜在扩散模型
在有限的测量基础上创建准确且符合地质实际的储层面对于油田开发和储层管理至关重要,尤其是在石油和天然气领域。传统的两点地质统计虽然具有基础性,但往往难以捕捉复杂的地质模式。多点统计提供了更大的灵活性,但也面临着与模式配置和存储限制相关的挑战。随着生成对抗网络(GANs)的兴起及其在各个领域的成功应用,人们开始将其用于地貌生成。然而,计算机视觉领域的最新进展表明,扩散模型优于 GANs。受此启发,我们提出了一种新颖的潜在扩散模型,该模型专为有条件生成储层剖面而设计。该模型可生成高保真的储层面,并严格保留条件数据。它明显优于基于 GAN 的替代方法。我们在 GitHub 上的实现:github.com/ML4ITS/Latent-Diffusion-Model-for-Conditional-Reservoir-Facies-Generation
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data Efficient reservoir characterization using dimensionless ensemble smoother and multiple data assimilation in damaged multilayer systems Shear wave velocity prediction based on bayesian-optimized multi-head attention mechanism and CNN-BiLSTM Multivariate simulation using a locally varying coregionalization model Automatic variogram calculation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1