Ziluo Cheng , Xiao Wang , Xiaona Li , Zhumin Li , Yinglin Hu , Qiao Jiang , Renwei Liu , Yuandi Hou , Min Li , Rui Zheng , Chuang Dong
{"title":"Wide-temperature-range tribological properties of Cu-Ni-Al films with multiple oxidation states","authors":"Ziluo Cheng , Xiao Wang , Xiaona Li , Zhumin Li , Yinglin Hu , Qiao Jiang , Renwei Liu , Yuandi Hou , Min Li , Rui Zheng , Chuang Dong","doi":"10.1016/j.vacuum.2024.113823","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature (HT) apparatus suffer from galling and seizure of contact interface, for which a wear-resistant film is helpful but challenging to design. In this work, the Cu-Ni-Al films prepared by magnetron sputtering provide effective wear-resistant protection for Ni-based superalloy over room temperature (RT) to 800 °C, decreasing the coefficient of friction by 45 %, 30 %, 15 % and wear rate by 97 %, 65 %, 62 % at RT, 400 °C, 600 °C, respectively, and exhibiting especially low wear rate 1.88 × 10<sup>−5</sup>mm<sup>3</sup>N<sup>−1</sup>m<sup>−1</sup> at 800 °C. Layered structure with multiple oxidation states formed during friction is the crucial, with the Cu<sub>2</sub>O-rich layer and the CuO layer serving lubrication at RT and HT, respectively. The FCC + L1<sub>2</sub> structure ensures the high-temperature carrying capacity and film-substrate adhesion. AFM investigation exhibits the microscale tribological behavior is relevance with Ni + Al content. This work provides a novel strategy for the design and preparation of wide-temperature-range wear-resistant film.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113823"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008698","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature (HT) apparatus suffer from galling and seizure of contact interface, for which a wear-resistant film is helpful but challenging to design. In this work, the Cu-Ni-Al films prepared by magnetron sputtering provide effective wear-resistant protection for Ni-based superalloy over room temperature (RT) to 800 °C, decreasing the coefficient of friction by 45 %, 30 %, 15 % and wear rate by 97 %, 65 %, 62 % at RT, 400 °C, 600 °C, respectively, and exhibiting especially low wear rate 1.88 × 10−5mm3N−1m−1 at 800 °C. Layered structure with multiple oxidation states formed during friction is the crucial, with the Cu2O-rich layer and the CuO layer serving lubrication at RT and HT, respectively. The FCC + L12 structure ensures the high-temperature carrying capacity and film-substrate adhesion. AFM investigation exhibits the microscale tribological behavior is relevance with Ni + Al content. This work provides a novel strategy for the design and preparation of wide-temperature-range wear-resistant film.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.