{"title":"A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction","authors":"Weipeng Li , Yuting Chong , Xin Guo , Jun Liu","doi":"10.1016/j.egyai.2024.100442","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and accurate wind power prediction is crucial for enhancing the reliability and safety of power system. The data-driven forecasting methods are regarded as an effective solution. However, the inherent randomness and nonlinearity of wind power systems, along with the abundance of redundant information in measurement data, present challenges to forecasting methods. The integration of precise and efficient techniques for data feature decomposition and extraction is essential in conjunction with advanced data-driven forecasting models. Focus on the seasonal variation characteristics of wind energy, a hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction is proposed. The effectiveness and superiority of the proposed method in predictive accuracy are demonstrated through comprehensive multi-model experiment comparisons.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100442"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and accurate wind power prediction is crucial for enhancing the reliability and safety of power system. The data-driven forecasting methods are regarded as an effective solution. However, the inherent randomness and nonlinearity of wind power systems, along with the abundance of redundant information in measurement data, present challenges to forecasting methods. The integration of precise and efficient techniques for data feature decomposition and extraction is essential in conjunction with advanced data-driven forecasting models. Focus on the seasonal variation characteristics of wind energy, a hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction is proposed. The effectiveness and superiority of the proposed method in predictive accuracy are demonstrated through comprehensive multi-model experiment comparisons.