Zhaoqi Hou , Tao Wang , Peipei Wang , Yuhao Wu , Wanchang Sun
{"title":"Size dependent mechanical properties and deformation mechanisms in Ti and Zr films","authors":"Zhaoqi Hou , Tao Wang , Peipei Wang , Yuhao Wu , Wanchang Sun","doi":"10.1016/j.vacuum.2024.113810","DOIUrl":null,"url":null,"abstract":"<div><div>The nanometallic Ti and Zr monolayer films with various thicknesses ranging from 600 to 2200 nm were prepared by using magnetron sputtering technique. The microstructure results demonstrated that Ti films transformed from hcp to fcc at <em>t</em> ≤ 600 nm, while Zr films were grown with hcp structure of nanocolumnar grain. Moreover, the grain orientation of hcp Ti films changed from (0002) preferred orientation at <em>t</em> = 1200 nm to random orientation at larger thickness. Subsequently, the hardness and strain rate sensitivity of films were explored by nanoindentation. The Hall-Petch relationship is obviously invalid to explain the film thickness dependent hardening behaviors in Ti and Zr films, and the influence of phase structure, orientation and residual stress on nanoindentation hardness was discussed. It seems that residual stress plays an important role in the determination of hardness in present Ti and Zr films. The negative strain rate sensitivity <em>m</em> appeared during the plastic deformation of fcc Ti films, which is caused by the phase transformation. The underlying deformation mechanism of hcp Ti and Zr films was also discussed.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113810"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X2400856X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The nanometallic Ti and Zr monolayer films with various thicknesses ranging from 600 to 2200 nm were prepared by using magnetron sputtering technique. The microstructure results demonstrated that Ti films transformed from hcp to fcc at t ≤ 600 nm, while Zr films were grown with hcp structure of nanocolumnar grain. Moreover, the grain orientation of hcp Ti films changed from (0002) preferred orientation at t = 1200 nm to random orientation at larger thickness. Subsequently, the hardness and strain rate sensitivity of films were explored by nanoindentation. The Hall-Petch relationship is obviously invalid to explain the film thickness dependent hardening behaviors in Ti and Zr films, and the influence of phase structure, orientation and residual stress on nanoindentation hardness was discussed. It seems that residual stress plays an important role in the determination of hardness in present Ti and Zr films. The negative strain rate sensitivity m appeared during the plastic deformation of fcc Ti films, which is caused by the phase transformation. The underlying deformation mechanism of hcp Ti and Zr films was also discussed.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.