Y. Meng , G.X. zhang , D.W. Chen , M. Xu , Q.W. Liu , F.C. Jiao
{"title":"Construction and degradation mechanism of the magnetic CoFe1.95Y0.05O4/Ag/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic activity","authors":"Y. Meng , G.X. zhang , D.W. Chen , M. Xu , Q.W. Liu , F.C. Jiao","doi":"10.1016/j.vacuum.2024.113817","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a Z-scheme heterojunction CoFe<sub>1.95</sub>Y<sub>0.05</sub>O<sub>4</sub>/Ag/g-C<sub>3</sub>N<sub>4</sub> (CFYO/ACN) magnetic nanocomposite was prepared by hydrothermal synthesis. The composite was characterised and analyzed using different characterization tools and its photocatalytic degradation activity towards methylene blue (MB) was investigated. The results showed that the CFYO/ACN photocatalyst compared to CoFe<sub>1.95</sub>Y<sub>0.05</sub>O<sub>4</sub> (CFYO) and Ag/g-C<sub>3</sub>N<sub>4</sub> (ACN), the composite CFYO/ACN had the highest degradation efficiency of MB, which was up to 97 % within 120 min, which was 1.26 and 1.09 times higher than that of ACN and CFYO, respectively. The enhancement of the catalytic performance of CFYO/ACN was attributed to the fact that the heterogeneous junction formation effectively inhibited the complexation of photogenerated carriers. In addition, five consecutive cyclic degradation experiments showed that CFYO/ACN exhibited efficient photocatalytic degradation, stable crystal structure, and easy recycling in the photodegradation process. Finally, the capture experiments confirmed that superoxide radicals (<span><math><mrow><mo>⋅</mo><msubsup><mi>O</mi><mn>2</mn><mo>−</mo></msubsup></mrow></math></span>) and hydroxyl radicals (·OH) play a major role in the degradation process. This study provides an effective strategy for the construction of efficient photocatalysts.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113817"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008637","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a Z-scheme heterojunction CoFe1.95Y0.05O4/Ag/g-C3N4 (CFYO/ACN) magnetic nanocomposite was prepared by hydrothermal synthesis. The composite was characterised and analyzed using different characterization tools and its photocatalytic degradation activity towards methylene blue (MB) was investigated. The results showed that the CFYO/ACN photocatalyst compared to CoFe1.95Y0.05O4 (CFYO) and Ag/g-C3N4 (ACN), the composite CFYO/ACN had the highest degradation efficiency of MB, which was up to 97 % within 120 min, which was 1.26 and 1.09 times higher than that of ACN and CFYO, respectively. The enhancement of the catalytic performance of CFYO/ACN was attributed to the fact that the heterogeneous junction formation effectively inhibited the complexation of photogenerated carriers. In addition, five consecutive cyclic degradation experiments showed that CFYO/ACN exhibited efficient photocatalytic degradation, stable crystal structure, and easy recycling in the photodegradation process. Finally, the capture experiments confirmed that superoxide radicals () and hydroxyl radicals (·OH) play a major role in the degradation process. This study provides an effective strategy for the construction of efficient photocatalysts.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.