W.H. Li , X. Weng , L.J. Meng , J. Chen , L. Hu , D.L. Geng , W.L. Wang
{"title":"Thermophysical properties of AlxCoCrCuFeNi high entropy alloys","authors":"W.H. Li , X. Weng , L.J. Meng , J. Chen , L. Hu , D.L. Geng , W.L. Wang","doi":"10.1016/j.vacuum.2024.113770","DOIUrl":null,"url":null,"abstract":"<div><div>The Al<sub><em>x</em></sub>CoCrCuFeNi (<em>x</em> = 0.25, 0.5, 1, 2) high entropy alloys (HEAs) were prepared by arc melting and spray casting techniques. Their microstructures, hardness, and thermophysical properties such as fusion enthalpy, entropy, thermal diffusion coefficients, thermal expansion coefficients, were investigated. XRD results indicated that Al<sub><em>x</em></sub>CoCrCuFeNi (<em>x</em> = 0.25 and 0.5) alloys were composed of a high-entropy FCC phase and Cu-rich nanophase. As the Al content increased to 1 and 2, the phase structures included the AlNi-rich B2 phase, FeCr-rich A2 phase and Cu-rich nanophase. With the increased Al content, the microstructures of Al<sub><em>x</em></sub>CoCrCuFeNi HEAs transitioned from coarse dendrites to petal-like dendrites, and the grains were continuously refined. Moreover, the Al additions reduced the density whereas increased the Vickers hardness of the alloys. The maximum hardness observed in Al<sub>2</sub>CoCrCuFeNi HEA was approximately 2.4 times greater than that of the Al<sub>0.25</sub>CoCrCuFeNi HEA. The thermal diffusion coefficients of alloys initially increased and subsequently decreased as the temperature elevated. The phase transformation induced by Al content was an effective method for rapidly homogenizing the internal temperature of alloys. Furthermore, the crystal structure, elemental segregation, lattice distortion, enthalpy and entropy of fusion, and lattice vibration frequency all mutually affected the thermal diffusion and expansion coefficients of Al<sub><em>x</em></sub>CoCrCuFeNi HEAs.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113770"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008169","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The AlxCoCrCuFeNi (x = 0.25, 0.5, 1, 2) high entropy alloys (HEAs) were prepared by arc melting and spray casting techniques. Their microstructures, hardness, and thermophysical properties such as fusion enthalpy, entropy, thermal diffusion coefficients, thermal expansion coefficients, were investigated. XRD results indicated that AlxCoCrCuFeNi (x = 0.25 and 0.5) alloys were composed of a high-entropy FCC phase and Cu-rich nanophase. As the Al content increased to 1 and 2, the phase structures included the AlNi-rich B2 phase, FeCr-rich A2 phase and Cu-rich nanophase. With the increased Al content, the microstructures of AlxCoCrCuFeNi HEAs transitioned from coarse dendrites to petal-like dendrites, and the grains were continuously refined. Moreover, the Al additions reduced the density whereas increased the Vickers hardness of the alloys. The maximum hardness observed in Al2CoCrCuFeNi HEA was approximately 2.4 times greater than that of the Al0.25CoCrCuFeNi HEA. The thermal diffusion coefficients of alloys initially increased and subsequently decreased as the temperature elevated. The phase transformation induced by Al content was an effective method for rapidly homogenizing the internal temperature of alloys. Furthermore, the crystal structure, elemental segregation, lattice distortion, enthalpy and entropy of fusion, and lattice vibration frequency all mutually affected the thermal diffusion and expansion coefficients of AlxCoCrCuFeNi HEAs.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.