Yunfeng Chen , Jia Lu , Qingni Li , Wanlu Hua , Wenjin Zhang , Chunyang Li , Yuanlang Liu , Zejun Wang
{"title":"Influencing factors analysis of infectious SARS-CoV-2 aerosols sampling","authors":"Yunfeng Chen , Jia Lu , Qingni Li , Wanlu Hua , Wenjin Zhang , Chunyang Li , Yuanlang Liu , Zejun Wang","doi":"10.1016/j.jaerosci.2024.106487","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing the potential infectivity of airborne viruses is critical for evaluating the risk of their transmission through air. This study investigated the factors influencing the collection of infectious SARS-CoV-2 aerosols using three common aerosol samplers: the impactor sampler AGI-30, the SKC Biosampler, and a cyclone sampler WA-400III. It was found that the sampling process over time significantly impacted the infectivity of SARS-CoV-2 captured in the sampler, and the infectivity loss of different SARS-CoV-2 variants in the process varied. Additionally, adding newborn calf serum in the collection suspension could effectively preserve viral infectivity in the sampler. Further tests conducted under various ventilation occasions indicated that ventilation can reduce the virus concentration in the environment and rapidly clear viral particles after aerosol generation. Although the flow rate of WA-400III is higher, it only could collect higher concentrations of viral RNA instead of live viruses than AGI-30 or SKC Biosampler when aerosol was generated constantly in the environment. After aerosol generation stopped, the WA-400III collected more infectious viruses and viral RNA. This study highlights the impact of the sampling process on captured virus should be assessed and protective agent is needed to preserve viral viability. And it is crucial to select appropriate sampler based on environmental characteristics and research objectives for obtaining optimal results. The AGI-30 and SKC Biosampler are preferable for collecting infectious viruses in environments with high aerosol concentrations, while the cyclone sampler WA-400III is more effective for collecting viral nucleic acids and enriching virus samples in confined spaces with lower viral loads.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"183 ","pages":"Article 106487"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002185022400154X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the potential infectivity of airborne viruses is critical for evaluating the risk of their transmission through air. This study investigated the factors influencing the collection of infectious SARS-CoV-2 aerosols using three common aerosol samplers: the impactor sampler AGI-30, the SKC Biosampler, and a cyclone sampler WA-400III. It was found that the sampling process over time significantly impacted the infectivity of SARS-CoV-2 captured in the sampler, and the infectivity loss of different SARS-CoV-2 variants in the process varied. Additionally, adding newborn calf serum in the collection suspension could effectively preserve viral infectivity in the sampler. Further tests conducted under various ventilation occasions indicated that ventilation can reduce the virus concentration in the environment and rapidly clear viral particles after aerosol generation. Although the flow rate of WA-400III is higher, it only could collect higher concentrations of viral RNA instead of live viruses than AGI-30 or SKC Biosampler when aerosol was generated constantly in the environment. After aerosol generation stopped, the WA-400III collected more infectious viruses and viral RNA. This study highlights the impact of the sampling process on captured virus should be assessed and protective agent is needed to preserve viral viability. And it is crucial to select appropriate sampler based on environmental characteristics and research objectives for obtaining optimal results. The AGI-30 and SKC Biosampler are preferable for collecting infectious viruses in environments with high aerosol concentrations, while the cyclone sampler WA-400III is more effective for collecting viral nucleic acids and enriching virus samples in confined spaces with lower viral loads.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.