Ji Lin , Md. Tariful Islam Mredha , Rumesh Rangana Manimel Wadu , Chuanqian Shi , Rui Xiao , Insu Jeon , Jin Qian
{"title":"Time-dependent constitutive behaviors of a dynamically crosslinked glycerogel governed by bond kinetics and chain diffusion","authors":"Ji Lin , Md. Tariful Islam Mredha , Rumesh Rangana Manimel Wadu , Chuanqian Shi , Rui Xiao , Insu Jeon , Jin Qian","doi":"10.1016/j.jmps.2024.105951","DOIUrl":null,"url":null,"abstract":"<div><div>Soft materials featuring dynamic networks represent a burgeoning frontier in materials science, offering multifaceted applications spanning soft robotics, biomaterials, and flexible electronics. Unraveling the time-dependent constitutive behavior of these materials, rooted in dynamic networks, stands as a pivotal pursuit for engineering advancements. Herein, we fabricate a tough and extreme-temperature-tolerant glycerogel with a polymer network crosslinked by metal-coordination crosslinkers and conduct a thorough analysis of its intricate mechanical responses across monotonic loading, relaxation, creep, and cyclic tests. We then develop a physically grounded constitutive model integrating the dynamics of crosslinker association/dissociation and polymer chain diffusion, furnishing a holistic framework to elucidate their interplay. We employ a statistical description, using density functions of chains in terms of end-to-end vectors, to characterize network reconfiguration. The evolution of chain density under external load, mediated by crosslinker kinetics and chain diffusion in a viscous medium, leads to intriguing variations in elastic energy and stress responses. Through meticulous experimental validation and numerical simulations, we demonstrate the efficacy of the model in forecasting the mechanical behavior of dynamic polymer networks under diverse loading scenarios, encompassing strain rate effects, stress relaxation, Mullins effect, and self-recovery phenomena. Our findings provide valuable insights into the design and optimization of dynamic network-based materials for diverse applications in biomedical and engineering fields.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624004174","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft materials featuring dynamic networks represent a burgeoning frontier in materials science, offering multifaceted applications spanning soft robotics, biomaterials, and flexible electronics. Unraveling the time-dependent constitutive behavior of these materials, rooted in dynamic networks, stands as a pivotal pursuit for engineering advancements. Herein, we fabricate a tough and extreme-temperature-tolerant glycerogel with a polymer network crosslinked by metal-coordination crosslinkers and conduct a thorough analysis of its intricate mechanical responses across monotonic loading, relaxation, creep, and cyclic tests. We then develop a physically grounded constitutive model integrating the dynamics of crosslinker association/dissociation and polymer chain diffusion, furnishing a holistic framework to elucidate their interplay. We employ a statistical description, using density functions of chains in terms of end-to-end vectors, to characterize network reconfiguration. The evolution of chain density under external load, mediated by crosslinker kinetics and chain diffusion in a viscous medium, leads to intriguing variations in elastic energy and stress responses. Through meticulous experimental validation and numerical simulations, we demonstrate the efficacy of the model in forecasting the mechanical behavior of dynamic polymer networks under diverse loading scenarios, encompassing strain rate effects, stress relaxation, Mullins effect, and self-recovery phenomena. Our findings provide valuable insights into the design and optimization of dynamic network-based materials for diverse applications in biomedical and engineering fields.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.