Intelligent predictive networks for Cattaneo-Christov heat and mass transfer dissipated Williamson fluid through double stratification

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2024-11-06 DOI:10.1016/j.csite.2024.105411
Muhammad Asif Zahoor Raja , Atifa Latif , Muntaha Khalid , Kottakkaran Sooppy Nisar , Muhammad Shoaib
{"title":"Intelligent predictive networks for Cattaneo-Christov heat and mass transfer dissipated Williamson fluid through double stratification","authors":"Muhammad Asif Zahoor Raja ,&nbsp;Atifa Latif ,&nbsp;Muntaha Khalid ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;Muhammad Shoaib","doi":"10.1016/j.csite.2024.105411","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop an efficient predictive model for Cattaneo-Christov heat and mass transformation of dissipative Williamson fluid with the effects of double stratification (CCHMT-DWF-DS) using the Levenberg-Marquardt Backpropagation (LMA-BP) algorithm. The under-consideration Williamson fluid flow is magneto-hydro-dynamic, incompressible and two-dimensional through a stretching sheet. The mathematical model of nonlinear partial differential equations for physical phenomena is transformed into ordinary differential equations by means of renowned similarity transformations. The solutions of physical problem are computed by bvp4c technique through MATLAB. The LMA-BP is employed to train a backward neural network capable of accurately predicting velocity, temperature, and concentration profiles under various physical conditions such as changes in the Hartmann number <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>, Prandtl number <span><math><mrow><mi>Pr</mi></mrow></math></span>, Schmidt number <span><math><mrow><mi>S</mi><mi>c</mi></mrow></math></span>, Williamson parameter <span><math><mrow><mi>λ</mi></mrow></math></span>, the relaxation time of temperature <span><math><mrow><msub><mi>γ</mi><mn>1</mn></msub></mrow></math></span>, the relaxation time of concentration <span><math><mrow><msub><mi>γ</mi><mn>2</mn></msub></mrow></math></span>, temperature stratification <span><math><mrow><msub><mi>δ</mi><mn>1</mn></msub></mrow></math></span>, and concentration stratification <span><math><mrow><msub><mi>δ</mi><mn>2</mn></msub></mrow></math></span> for generating a variety of graphical outcomes and statistics. This research is significant for its innovative use of the LMA-BP in analyzing the complex dynamics of non-Newtonian fluids specifically the Williamson fluid, alongside the Cattaneo-Christov heat and mass flux model. The obtaining graphs have been discussed in detail. The thermal and solutal relaxation factors reduce heat and mass flow while fluid motion is delayed by the time-dependent parameter <span><math><mrow><mi>λ</mi></mrow></math></span> and further reduced by the Hartman number. The Cattaneo-Christov heat flux model enhances simulation accuracy by integrating temporal delays in heat transfer, proving beneficial for sophisticated industrial and scientific endeavors related to non-Newtonian fluids. This analysis offers a powerful predictive tool for applications in thermal management, industrial cooling systems, and biomedical fluid dynamics, advancing machine learning in fluid mechanics.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105411"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop an efficient predictive model for Cattaneo-Christov heat and mass transformation of dissipative Williamson fluid with the effects of double stratification (CCHMT-DWF-DS) using the Levenberg-Marquardt Backpropagation (LMA-BP) algorithm. The under-consideration Williamson fluid flow is magneto-hydro-dynamic, incompressible and two-dimensional through a stretching sheet. The mathematical model of nonlinear partial differential equations for physical phenomena is transformed into ordinary differential equations by means of renowned similarity transformations. The solutions of physical problem are computed by bvp4c technique through MATLAB. The LMA-BP is employed to train a backward neural network capable of accurately predicting velocity, temperature, and concentration profiles under various physical conditions such as changes in the Hartmann number Ha, Prandtl number Pr, Schmidt number Sc, Williamson parameter λ, the relaxation time of temperature γ1, the relaxation time of concentration γ2, temperature stratification δ1, and concentration stratification δ2 for generating a variety of graphical outcomes and statistics. This research is significant for its innovative use of the LMA-BP in analyzing the complex dynamics of non-Newtonian fluids specifically the Williamson fluid, alongside the Cattaneo-Christov heat and mass flux model. The obtaining graphs have been discussed in detail. The thermal and solutal relaxation factors reduce heat and mass flow while fluid motion is delayed by the time-dependent parameter λ and further reduced by the Hartman number. The Cattaneo-Christov heat flux model enhances simulation accuracy by integrating temporal delays in heat transfer, proving beneficial for sophisticated industrial and scientific endeavors related to non-Newtonian fluids. This analysis offers a powerful predictive tool for applications in thermal management, industrial cooling systems, and biomedical fluid dynamics, advancing machine learning in fluid mechanics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡塔尼奥-克里斯托夫热量和质量传递的智能预测网络(威廉姆森流体通过双层流
本研究旨在利用 Levenberg-Marquardt Backpropagation(LMA-BP)算法,为具有双分层效应的耗散威廉姆森流体的卡塔尼奥-克里斯托夫热质转换(CCHMT-DWF-DS)建立一个高效的预测模型。所考虑的威廉姆森流体为磁流体动力学流体,不可压缩,二维流动,流经拉伸片。物理现象的非线性偏微分方程数学模型通过著名的相似变换转换成常微分方程。物理问题的解是通过 MATLAB 的 bvp4c 技术计算得出的。利用 LMA-BP 训练一个后向神经网络,该网络能够准确预测各种物理条件下的速度、温度和浓度剖面,如哈特曼数 Ha、普朗特数 Pr、施密特数 Sc、威廉姆森参数 λ、温度弛豫时间 γ1、浓度弛豫时间 γ2、温度分层 δ1、浓度分层 δ2,并生成各种图形结果和统计数据。这项研究的重要意义在于创新性地将 LMA-BP 与 Cattaneo-Christov 热量和质量通量模型一起用于分析非牛顿流体(特别是 Williamson 流体)的复杂动力学。对得到的图形进行了详细讨论。热弛豫因子和溶质弛豫因子减少了热量和质量流量,而流体运动则因时间相关参数 λ 而延迟,并因哈特曼数而进一步减少。卡塔尼奥-克里斯托夫热通量模型通过整合传热中的时间延迟提高了模拟精度,证明有利于与非牛顿流体相关的复杂工业和科学研究。这项分析为热管理、工业冷却系统和生物医学流体动力学等应用提供了强大的预测工具,推动了流体力学中的机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Numerical analysis and experimental study of two-phase flow pattern and pressure drop characteristics in internally microfin tubes A novel high-temperature water cooling system utilizing cascaded cold energy from underground water plants in northern China Combustion characteristics of a 660 MW tangentially fired pulverized coal boiler considering different loads, burner combinations and horizontal deflection angles Performance evaluation of supercritical CO2 Brayton cycle with two-stage compression and intercooling Research on the mechanical and thermal properties of potting adhesive with different fillers of h-BN and MPCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1