{"title":"Annealed adaptive importance sampling method in PINNs for solving high dimensional partial differential equations","authors":"Zhengqi Zhang , Jing Li , Bin Liu","doi":"10.1016/j.jcp.2024.113561","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization (EM) algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINNs method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113561"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912400809X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization (EM) algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINNs method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.