Linlong Zhou , Shuyun Gu , Fang Xu , Jin Zhang , Zheyi Hu , Siyao Li , Zhi Xu
{"title":"Ultrathin cyclodextrin-based nanofiltration membrane with tunable microporosity for antibiotic desalination","authors":"Linlong Zhou , Shuyun Gu , Fang Xu , Jin Zhang , Zheyi Hu , Siyao Li , Zhi Xu","doi":"10.1016/j.memsci.2024.123504","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofiltration (NF) membranes play a crucial role in ion separation and antibiotic purification due to their energy efficiency and environment-friendliness. However, conventional polymeric membranes are susceptible to the “trade-off” between permeability and selectivity due to the lack of intrinsically rigid micropores. Herein, the amino-cyclodextrins (amino-CDs) with different cavity sizes were synthesized and employed as the building block to construct 15-nm-thick nanofilms. The rational incorporation of macrocycles with well-defined and tunable cavity into nanofilm enabled a significant enhancement of water permeance and a precise manipulation of molecular weight cut-off of the membranes. Thanks to the significant difference of inherent energy barrier for passage of ions through CD cavity, the CD-incorporated membranes achieved a high Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup> selectivity of 87. In addition, the CD-regulated membranes showed an excellent antibiotic desalination performance, out-performing the state-of-the-art membranes for antibiotic purification. This work provides a gateway to the development of nanofiltration membranes with precise molecular sieving for antibiotic desalination.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123504"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010986","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofiltration (NF) membranes play a crucial role in ion separation and antibiotic purification due to their energy efficiency and environment-friendliness. However, conventional polymeric membranes are susceptible to the “trade-off” between permeability and selectivity due to the lack of intrinsically rigid micropores. Herein, the amino-cyclodextrins (amino-CDs) with different cavity sizes were synthesized and employed as the building block to construct 15-nm-thick nanofilms. The rational incorporation of macrocycles with well-defined and tunable cavity into nanofilm enabled a significant enhancement of water permeance and a precise manipulation of molecular weight cut-off of the membranes. Thanks to the significant difference of inherent energy barrier for passage of ions through CD cavity, the CD-incorporated membranes achieved a high Cl−/SO42− selectivity of 87. In addition, the CD-regulated membranes showed an excellent antibiotic desalination performance, out-performing the state-of-the-art membranes for antibiotic purification. This work provides a gateway to the development of nanofiltration membranes with precise molecular sieving for antibiotic desalination.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.