Minfeng Dou , Xiyao Wang , Hongxin Yao , Linshuang Long , Guozhu Zhao , Hong Ye
{"title":"High-precision reconstruction of a heat flux boundary via a programmable scanning electron beam controlled by the voltage waveform design method","authors":"Minfeng Dou , Xiyao Wang , Hongxin Yao , Linshuang Long , Guozhu Zhao , Hong Ye","doi":"10.1016/j.csite.2024.105455","DOIUrl":null,"url":null,"abstract":"<div><div>A scanning electron beam can be used to construct heat flux boundaries (HFBs). However, the long current response time in the deflection coil using a current control method (CCM) cause the deviation of the current waveform, potentially reducing the accuracy of the reconstructed HFB relative to the target HFB. The impact of the current response time on the reconstruction accuracy increases as the field frequency increases, and the accuracy can be reduced from 0.89 to 0.69. To shorten the current response time and improve the reconstruction accuracy, a voltage waveform design method (VWDM) is introduced as a replacement for the CCM. The result indicates that the accuracy of the HFB reconstructed by a scanning electron beam controlled by the VWDM can reach 0.91. Additionally, increasing the maximum output voltage of the power amplifier used to generate the voltage can further improve the reconstruction accuracy of the HFB with the VWDM. This study provides a new approach for the accurate construction of HFBs for rapid thermal processing, additive manufacturing and thermal assessment of hypersonic vehicles.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105455"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014862","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A scanning electron beam can be used to construct heat flux boundaries (HFBs). However, the long current response time in the deflection coil using a current control method (CCM) cause the deviation of the current waveform, potentially reducing the accuracy of the reconstructed HFB relative to the target HFB. The impact of the current response time on the reconstruction accuracy increases as the field frequency increases, and the accuracy can be reduced from 0.89 to 0.69. To shorten the current response time and improve the reconstruction accuracy, a voltage waveform design method (VWDM) is introduced as a replacement for the CCM. The result indicates that the accuracy of the HFB reconstructed by a scanning electron beam controlled by the VWDM can reach 0.91. Additionally, increasing the maximum output voltage of the power amplifier used to generate the voltage can further improve the reconstruction accuracy of the HFB with the VWDM. This study provides a new approach for the accurate construction of HFBs for rapid thermal processing, additive manufacturing and thermal assessment of hypersonic vehicles.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.