{"title":"Order degree and centrality analysis of advanced fighter environmental control system and thermal management system","authors":"Junyuan Liao, Chunxin Yang, Han Yang","doi":"10.1016/j.csite.2024.105486","DOIUrl":null,"url":null,"abstract":"<div><div>As fighter aircraft become more advanced, traditional air cycle systems have fallen short of meeting the complex environmental control requirements. Advanced fighters such as the F-22 Raptor have responded to these challenges by adopting integrated thermal management systems. These systems feature complex thermodynamic processes and intricate information transmission pathways among various components, creating a sophisticated network structure. To unravel the complexity of such systems, this paper employs a blend of thermodynamics and information theory. We conduct multi-level analysis using structure entropy method and centrality algorithms to explore the information transmission characteristics within these thermodynamic systems. At the system level, we find that variation in environmental parameters have only a 1 % impact on order degree, whereas the influence from the system's own structure is more pronounced. At the component level, within the whole system, the varies components in AFT PAO and fuel loops emerge as critical hubs for information transmission. Among these components, the PAO/Fuel stands out as the most important, with closeness and betweenness centrality exceeding that of all other components by at least 11.5 % and 29.1 %. This study offers a theoretical foundation for the optimization of thermodynamic system structure and layout, viewed through the lens of information theory.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105486"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X2401517X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
As fighter aircraft become more advanced, traditional air cycle systems have fallen short of meeting the complex environmental control requirements. Advanced fighters such as the F-22 Raptor have responded to these challenges by adopting integrated thermal management systems. These systems feature complex thermodynamic processes and intricate information transmission pathways among various components, creating a sophisticated network structure. To unravel the complexity of such systems, this paper employs a blend of thermodynamics and information theory. We conduct multi-level analysis using structure entropy method and centrality algorithms to explore the information transmission characteristics within these thermodynamic systems. At the system level, we find that variation in environmental parameters have only a 1 % impact on order degree, whereas the influence from the system's own structure is more pronounced. At the component level, within the whole system, the varies components in AFT PAO and fuel loops emerge as critical hubs for information transmission. Among these components, the PAO/Fuel stands out as the most important, with closeness and betweenness centrality exceeding that of all other components by at least 11.5 % and 29.1 %. This study offers a theoretical foundation for the optimization of thermodynamic system structure and layout, viewed through the lens of information theory.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.