Rong Xiao, Zhiyuan Hu, Jie Zhang, Chenwei Tang, Jiancheng Lv
{"title":"Multi-attribute dynamic attenuation learning improved spiking actor network","authors":"Rong Xiao, Zhiyuan Hu, Jie Zhang, Chenwei Tang, Jiancheng Lv","doi":"10.1016/j.neucom.2024.128819","DOIUrl":null,"url":null,"abstract":"<div><div>Deep reinforcement learning (DRL) has shown promising results in solving robotic control and decision tasks, which can learn the high-dimensional state and action information well. Despite their successes, conventional neural-based DRL models are criticized for low energy efficiency, making them laborious to be widely applied in low-power electronics. With more biologically plausible plasticity principles, spiking neural networks (SNNs) are now considered an energy-efficient and robust alternative. The most existing dynamics and learning paradigms for spiking neurons with a common Leaky Integrate-and-Fire (LIF) neuron model often result in relatively low efficiency and poor robustness. To address these limitations, we propose a multi-attribute dynamic attenuation learning improved spiking actor network (MADA-SAN) for reinforcement learning to achieve effective decision-making. The resistance, membrane voltage and membrane current of spiking neurons are updated from a fixed value into dynamic attenuation. By enhancing the temporal relation dependencies in neurons, this model can learn the spatio-temporal relevance of complex continuous information well. Extensive experimental results show MADA-SAN performs better than its counterpart deep actor network on six continuous control tasks from OpenAI gym. Besides, we further validated the proposed MADA-LIF can achieve comparable performance with other state-of-the-art algorithms on MNIST and DVS-gesture recognition tasks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128819"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401590X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep reinforcement learning (DRL) has shown promising results in solving robotic control and decision tasks, which can learn the high-dimensional state and action information well. Despite their successes, conventional neural-based DRL models are criticized for low energy efficiency, making them laborious to be widely applied in low-power electronics. With more biologically plausible plasticity principles, spiking neural networks (SNNs) are now considered an energy-efficient and robust alternative. The most existing dynamics and learning paradigms for spiking neurons with a common Leaky Integrate-and-Fire (LIF) neuron model often result in relatively low efficiency and poor robustness. To address these limitations, we propose a multi-attribute dynamic attenuation learning improved spiking actor network (MADA-SAN) for reinforcement learning to achieve effective decision-making. The resistance, membrane voltage and membrane current of spiking neurons are updated from a fixed value into dynamic attenuation. By enhancing the temporal relation dependencies in neurons, this model can learn the spatio-temporal relevance of complex continuous information well. Extensive experimental results show MADA-SAN performs better than its counterpart deep actor network on six continuous control tasks from OpenAI gym. Besides, we further validated the proposed MADA-LIF can achieve comparable performance with other state-of-the-art algorithms on MNIST and DVS-gesture recognition tasks.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.