Hao Song , Qingshan She , Feng Fang , Su Liu , Yun Chen , Yingchun Zhang
{"title":"Domain generalization through latent distribution exploration for motor imagery EEG classification","authors":"Hao Song , Qingshan She , Feng Fang , Su Liu , Yun Chen , Yingchun Zhang","doi":"10.1016/j.neucom.2024.128889","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG)-based Motor Imagery (MI) brain-computer interface (BCI) systems play essential roles in motor function rehabilitation for patients with post-stroke. Existing neural networks for decoding MI EEG face challenges due to nonstationary characteristics and subject-specific variations of EEG data. To address these challenges and improve generalization performance, this study proposes a domain generalization (DG) model that eliminates the need for user-specific calibration in real-life applications. Specifically, the proposed model comprises two branches: the first branch applies several independent decision-making networks to decode and classify subjects’ motor intentions, while the second branch adaptively assigns weights to classification results and fuses them into a comprehensive decision. Both branches utilize EEGNet and ShallowConvNet to extract time-frequency-spatial features. By implementing multiple classification networks, the model can learn a broad range of data distributions from source subjects, which contributes to improved generalization performance on target subjects. The proposed EEG-DG framework was evaluated on BCI Competition IV Dataset 2a, 2b and PhysioNet. Results show that the proposed framework significantly enhances the classification performance of MI EEG, outperforming several state-of-the-art models on all three datasets, underlining its superior efficacy in real-world scenarios and exceptional generalization performance. The source code can be accessed at <span><span>https://github.com/DrugLover/Multibranch-DG-EEG</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128889"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016606","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalography (EEG)-based Motor Imagery (MI) brain-computer interface (BCI) systems play essential roles in motor function rehabilitation for patients with post-stroke. Existing neural networks for decoding MI EEG face challenges due to nonstationary characteristics and subject-specific variations of EEG data. To address these challenges and improve generalization performance, this study proposes a domain generalization (DG) model that eliminates the need for user-specific calibration in real-life applications. Specifically, the proposed model comprises two branches: the first branch applies several independent decision-making networks to decode and classify subjects’ motor intentions, while the second branch adaptively assigns weights to classification results and fuses them into a comprehensive decision. Both branches utilize EEGNet and ShallowConvNet to extract time-frequency-spatial features. By implementing multiple classification networks, the model can learn a broad range of data distributions from source subjects, which contributes to improved generalization performance on target subjects. The proposed EEG-DG framework was evaluated on BCI Competition IV Dataset 2a, 2b and PhysioNet. Results show that the proposed framework significantly enhances the classification performance of MI EEG, outperforming several state-of-the-art models on all three datasets, underlining its superior efficacy in real-world scenarios and exceptional generalization performance. The source code can be accessed at https://github.com/DrugLover/Multibranch-DG-EEG.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.