Minimum control of cluster synchronization effort in diffusion coupled nonlinear networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-08 DOI:10.1016/j.neucom.2024.128841
Jinkui Zhang , Shidong Zhai , Wei Zhu
{"title":"Minimum control of cluster synchronization effort in diffusion coupled nonlinear networks","authors":"Jinkui Zhang ,&nbsp;Shidong Zhai ,&nbsp;Wei Zhu","doi":"10.1016/j.neucom.2024.128841","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the design of minimal control effort for cluster synchronization (CS) in a diffusion-coupled nonlinear network under directed graph. Under the conditions that the directed graph satisfies the cluster input equivalence condition and the system possesses a bounded Jacobian matrix, we obtain CS of diffusion-coupled nonlinear network with non-diagonal coupling matrix. Based on matrix measure and balancing theorem, we obtain the local minimization controllers for the minimal control effort of CS. Finally, the theoretical results are validated through a numerical example involving a network of coupled FitzHugh–Nagumo neurons with a general topology of interactions.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128841"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016126","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the design of minimal control effort for cluster synchronization (CS) in a diffusion-coupled nonlinear network under directed graph. Under the conditions that the directed graph satisfies the cluster input equivalence condition and the system possesses a bounded Jacobian matrix, we obtain CS of diffusion-coupled nonlinear network with non-diagonal coupling matrix. Based on matrix measure and balancing theorem, we obtain the local minimization controllers for the minimal control effort of CS. Finally, the theoretical results are validated through a numerical example involving a network of coupled FitzHugh–Nagumo neurons with a general topology of interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩散耦合非线性网络中集群同步努力的最小控制
本文研究了有向图下扩散耦合非线性网络中集群同步(CS)的最小控制力设计。在有向图满足簇输入等价条件和系统具有有界雅各布矩阵的条件下,我们得到了非对角耦合矩阵的扩散耦合非线性网络的 CS。基于矩阵度量和平衡理论,我们得到了 CS 最小控制力的局部最小化控制器。最后,通过一个涉及具有一般拓扑相互作用的 FitzHugh-Nagumo 神经元耦合网络的数值示例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1