S2CA: Shared Concept Prototypes and Concept-level Alignment for text–video retrieval

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-08 DOI:10.1016/j.neucom.2024.128851
Yuxiao Li, Yu Xin, Jiangbo Qian, Yihong Dong
{"title":"S2CA: Shared Concept Prototypes and Concept-level Alignment for text–video retrieval","authors":"Yuxiao Li,&nbsp;Yu Xin,&nbsp;Jiangbo Qian,&nbsp;Yihong Dong","doi":"10.1016/j.neucom.2024.128851","DOIUrl":null,"url":null,"abstract":"<div><div>Text–video retrieval, as a fundamental task of cross-modal learning, relies on effectively establishing the semantic association between text and video. At present, mainstream semantic alignment methods for text–video adopt instance-level alignment strategies, ignoring the fine-grained concept association and the “concept-level alignment” characteristics of text–video. In this regard, we propose <strong>S</strong>hared <strong>C</strong>oncept Prototypes and <strong>C</strong>oncept-level <strong>A</strong>lignment (<strong>S2CA</strong>) to achieve concept-level alignment. Specifically, we utilize the text–video <strong>Shared Concept Prototypes</strong> mechanism to bridge the correspondence between text and video. On this basis, we use cross-attention and Gumbel-softmax to obtain <strong>Discrete Concept Allocation Matrices</strong> and then assign text and video tokens to corresponding concept prototypes. In this way, texts and videos are decoupled into multiple <strong>Conceptual Aggregated Features</strong>, thereby achieving <strong>Concept-level Alignment</strong>. In addition, we use CLIP as the teacher model and adopt the Align-Transform-Reconstruct distillation framework to strengthen the multimodal semantic learning ability. The extensive experiments on MSR-VTT, DiDeMo, ActivityNet and MSVD prove the effectiveness of our method.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128851"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016229","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Text–video retrieval, as a fundamental task of cross-modal learning, relies on effectively establishing the semantic association between text and video. At present, mainstream semantic alignment methods for text–video adopt instance-level alignment strategies, ignoring the fine-grained concept association and the “concept-level alignment” characteristics of text–video. In this regard, we propose Shared Concept Prototypes and Concept-level Alignment (S2CA) to achieve concept-level alignment. Specifically, we utilize the text–video Shared Concept Prototypes mechanism to bridge the correspondence between text and video. On this basis, we use cross-attention and Gumbel-softmax to obtain Discrete Concept Allocation Matrices and then assign text and video tokens to corresponding concept prototypes. In this way, texts and videos are decoupled into multiple Conceptual Aggregated Features, thereby achieving Concept-level Alignment. In addition, we use CLIP as the teacher model and adopt the Align-Transform-Reconstruct distillation framework to strengthen the multimodal semantic learning ability. The extensive experiments on MSR-VTT, DiDeMo, ActivityNet and MSVD prove the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S2CA:共享概念原型和概念级对齐,用于文本-视频检索
文本-视频检索作为跨模态学习的一项基本任务,有赖于有效建立文本与视频之间的语义关联。目前,主流的文本-视频语义对齐方法采用实例级对齐策略,忽略了文本-视频的细粒度概念关联和 "概念级对齐 "特性。为此,我们提出了共享概念原型和概念级对齐(S2CA)来实现概念级对齐。具体来说,我们利用文本-视频共享概念原型机制来弥合文本和视频之间的对应关系。在此基础上,我们使用交叉注意和 Gumbel-softmax 获得离散概念分配矩阵,然后将文本和视频标记分配给相应的概念原型。这样,文本和视频就被解耦为多个概念聚合特征,从而实现了概念级对齐。此外,我们使用 CLIP 作为教师模型,并采用 Align-Transform-Reconstruct 提炼框架来加强多模态语义学习能力。在 MSR-VTT、DiDeMo、ActivityNet 和 MSVD 上的大量实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1