Fan Li , Yan Li , Matteo Rubinato , Yu Zheng , Tao Zhou
{"title":"Risk assessment of urban infrastructure vulnerability to meteorological disasters: A case study of Dongguan, China","authors":"Fan Li , Yan Li , Matteo Rubinato , Yu Zheng , Tao Zhou","doi":"10.1016/j.ijdrr.2024.104943","DOIUrl":null,"url":null,"abstract":"<div><div>Effective forecasting and response to meteorological hazards are crucial for safeguarding life, property, and supporting sustainable socioeconomic development. With the rising frequency and severity of meteorological hazards worldwide, this study proposes an enhanced risk assessment framework for urban infrastructure exposed to extreme weather events, with a focus on cascading impacts to critical services such as electricity, communication, and transportation networks (roads and subways). A disaster-loss model is developed to quantify infrastructure vulnerability at various spatial and temporal scales under heavy rainfall conditions, accounting for secondary effects. The model's performance is validated through empirical analysis of a 15-year rainfall event in Dongguan City, China, occurring from September 7–8, 2023. Results indicate the model's ability to predict real-event outcomes with approximately 70% accuracy. This model offers valuable insights for disaster prevention and mitigation strategies, aiding decision-makers in optimizing emergency resource allocation, enhancing disaster response efficiency, and issuing timely public risk warnings to minimize losses.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"114 ","pages":"Article 104943"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420924007052","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective forecasting and response to meteorological hazards are crucial for safeguarding life, property, and supporting sustainable socioeconomic development. With the rising frequency and severity of meteorological hazards worldwide, this study proposes an enhanced risk assessment framework for urban infrastructure exposed to extreme weather events, with a focus on cascading impacts to critical services such as electricity, communication, and transportation networks (roads and subways). A disaster-loss model is developed to quantify infrastructure vulnerability at various spatial and temporal scales under heavy rainfall conditions, accounting for secondary effects. The model's performance is validated through empirical analysis of a 15-year rainfall event in Dongguan City, China, occurring from September 7–8, 2023. Results indicate the model's ability to predict real-event outcomes with approximately 70% accuracy. This model offers valuable insights for disaster prevention and mitigation strategies, aiding decision-makers in optimizing emergency resource allocation, enhancing disaster response efficiency, and issuing timely public risk warnings to minimize losses.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.